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Abstract 
    We derive extended theoretical  model for the coherent tunneling from quantum dot to 

quantum well which based on the transition – probability  formulation. This model is 

attractive since it analysis the tunneling probability from a zero – dimension (0D) subsystem 

to two – dimension (2D) subsystem. In our treatment, the barrier layer between the sub – 

system is neglected, while the effective mass discontinuity is taken into consideration. The 

quantum dot and quantum well energy spectrum are calculated as a function of the quantum 

dot radius and the quantum well width respectively. Then, the matrix element of the coupling 

interaction between the quantum dot and the quantum well is formulated to be depend on the 

electronic properties of the system. This matrix element formula is employed to formulate the 

tunneling rate between the quantum dot and the quantum well. The GaAs spherical quantum 

dot and GaAs quantum well are considered in our calculations. All the scientific steps, that 

are presented in our work, are important and necessary to study the electronic and transport 

properties of the device.   
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1 –   Introduction 
    Much attention is paid to the physics of 

low dimensional semiconductor structures. 

This has been stimulated by the rapid 

progress in nanometer-scale fabrication 

technology. Among those, quantum dots 

(QD’s) are of particular interest[1]. The 

most striking properties of semiconductor 

quantum dots is the massive change in 

optical properties as a function of quantum-

dot size. For example, the transition energy 

(or new band gap) can be tuned by the core 

diameter.  

 

The semiconductor quantum wells QWs, 

where narrow – band gap semiconductor 

material is sandwiched between different 

wide band gap materials by means of 

hetrojunctions causes the electron 

confinement in two – dimensions [2].  

Recently, a remarkable nano crystal 

heterostructure called quantum-dot quantum 

well (QDQW) structure was synthesized, 

which is composed of two different 

semiconductor materials [3] . The transition 

energy (or new band gap) can be tuned by 

the core diameter as well as the thickness of 

the well, and the thickness of the outmost 

shell [4]. 

The wet chemical synthesis, the 

characterization, and some linear and 

nonlinear optical properties of QDQW have 

been reported in detail [5,6,7]. It has been 

shown that the linear absorption of QDQW 

differs significantly from that of the 

composite materials [8].  

 

 

 

 

 

 

 

 

Recent attempts to control the localization to 

certain regions of the nano crystal have led 

to the synthesis of quantum – dot quantum 

well (QDQW) structures [5,6,7]. In these 

QDQW structures, a ‘‘quantum – well’’ 

layer is synthesized as a shell embedded in 

the quantum dot. The exciton should 

experience a lower potential at the quantum-

well layer and localize to this layer. The 

QDQW structure consists of a large band – 

gap CdS semiconducting core surrounded by 

a monolayer of smaller band-gap HgS 

capped by a layer of CdS.  

In this paper, we are concerned with the 

GaAs quantum well – quantum dot 

nanostructure system and develop a 

theoretical modeling for the electron 

tunneling from the quantum well into the 

quantum dot based on the electron properties 

of the quantum well – quantum dot 

hetrostructure,  i.e. the electron tunneling 

from a two – dimensional  (2D) structure 

into zero – dimensional (0D) structure. In 

the next  sections, we present an extended 

theoretical treatment to formulate and 

calculate the electronic properties for the 

subsystems and consequently the tunneling 

rates between them.  

2 – Theoretical modeling of coupled 

quantum dot – quantum well structure 
In our treatment, we neglect the barrier layer 

between them, while the effective mass 

discontinuity is taken into consideration.  
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Fig(1):Schematic illustration of the quantum dot – quantum well system .VD and VW are the potential energy 

depths of the quantum dot and the quantum well respectively. 

 

2-1 – The Quantum Dot Energy Spectrum  

For electron effective mass *M  moving in a 

spherical potential field, the wave function 

of the stationary state with well – defined 

values 
2L and zL is given by, 

),()(),,(  lmElElm YrFr      (1) 

Where )(rFEL  satisfy the following 

equation [9],  

0)(
)1(

)]([
22

22

*

2

2

















 
 rF

r

ll
rUE

M

dr

d

rdr

d
El

     (2) 

 

We consider a simple model for U(r) as, 










D

DD

Rr

RrV
rU

0
)(      (3)  

And by introducing the dimensionless 

variable rkD , we have the following 

second-order equation, 
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Where )(
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Eq.(4) has two independent solutions which 

can be expressed in terms of spherical 

Bessel's functions )(lj  and )(l [10].  

Since the function )(l  is irregular in the 

origin, then we have, 

DDl RrrkjAF  )()(1     (6) 

DDlD RrrqhCF  )()( )1(

2    (7) 

choose the general solution outside the well 

as a combination of the two solutions in 

terms of Hankle's function of order one  

)()()( 11

)1(  ijhl      (8) 

With 

2/2 Emq DD      (9)  

The condition that determine the energy 

level of the system DEE   is obtained 

according to the requirement that the 

logarithmic derivative of  )(1 F and 

)(2 F are equal at DRr  . 
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The eigen energy is -fold 

degenerate with respect to the angular 

momentum projection m. The common 

notations nS, nP, nD, . . . ,are used to 
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describe eigen dot states with angular 

momenta respectively. 

2 – 2  The Quantum Well Energy 

Spectrum 
Suppose that we have a quantum well as 

shown in Fig.(2) with width equals to L and 

effective potential given by : 
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Where   and FE  are the work function 

and Fermi energy level respectively. For the 

quantum well problem, the wave function 

may be given by [11]: 
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With v   is the volume of the quantum well 

(which is related to normalization factor ), 

WA , g   and 


k  are the wave amplitude, 

the reciprocal lattice vector and  the parallel 

wave vector respectively.  

 

 

 

 

 

 

 

 

 

 

Fig(2). The energy region of the quantum 

well. 

 

The wave function can also be  given 

by[11], 
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where )(zk
   is a function of  z only. We 

write the time independent Schrodinger 

equation in the z direction  as follows , 
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The solution  of equation ( 14  ) can take the 

following form [12] : 
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Where, )(


kAW , )(


kBW , )(


kCW  

and )(


kDW  are the amplitudes functions, 

with 
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with  *

WM   is the electron effective mass in 

the well. 

By applying the continuity conditions at the 

boundaries, we get 

at Lz   
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 at 0z  
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

 kCikkBikkD WZWZW     (23) 

Then by multiplying equation (20) by   

and  subtracts it from equation  (22) we get: 
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WZ

Lik

WZ
ZZ ekCikekBik )()()()(0


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
  (24) 

also by multiplying equation (21) by   and 

subtracts it from equation   (23)  we get: 

)()()()(0


 kCikkBik WZWZ   (25) 

We rearrange eqs.(24)and (25) in the 

following from , 
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From multiplying eq.(26) by eq.(27) we get: 
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Then, for even state we take the positive 

sign, 
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and the negative sign is taken  for the odd 

one , 
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Dividing (26) on (27), and then dividing its 

real and imaginary parts, one get 

 22/2)tan( zzZ kkLk                     (31) 

Equation (31) give the electronic energy 

spectrum of the quantum well.     

For the odd state, we write, 
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Then, by applying the normalization 

condition, 1
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2-3- The Matrix Element of the QW – QD  

Coupling Interaction 

 

 

 

 

 

 

 

 

 
Fig.(3).Schematic illustration for the quantum dot- quantum 

well system coordinates. 

 

To study the electrical  properties of the 

system considered in our study , we will 

derive a formula for the matrix element of 

the quantum well – the quantum dot 

coupling interaction which includes all the 

system parameters. Where the coordinate 

reference is located at 0z  

0)(  zZrr DD                                (34)  
With ),( zrr


  and ))(,( zZrr DDD 

 . 

Where )(zZD  is the normal distance to the  

interface between the quantum dot and the 

quantum well. 

Then, for isolated quantum dot and for  

DD Rr   the wave function of quantum 

dot is given by: 
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 Equation (35) can be written as , 

   

















 







)(

))(ˆ(

2

).().(

2

gkK

egkKe
kd

q

i
Cr

Z

rgkiK
lm

RgkiK

D

l

DDD

D



 (36) 

With ,  

})(
2

){()( 2

2
gk

Em
igkgkK

DD







(37) 

2

2
)(

2
)( gk

Em
igkk

DD

z 





 (38) 

To convert the integration into summation 

,we use the relation [13], 
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Then eq.(36) becomes ,  

 
 2

2

2

)(
).(

2
))(ˆ(

)(

2 gk
Em

z
rgki

lmk g
Z

RgkiK

D

l
D

D

DD
D

eegkK
gkK

e

q

i

L

C
z





















   
(40) 

 

The wave function of  the quantum well 

(eq.(12) )can be written as : 
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Where, v  is the quantum well volume and 

v2/1  is the normalization factor.  

The matrix element of the coupling between 

quantum well and quantum dot  is given 

by[14]: 
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Then, by using following relation [11] , 
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the atomic units then putting g=0 one can 

get the formula,  
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2-4- The line - width function 
 

    The broadening in quantum dot energy 

level, due to coupling interaction between 

the quantum well and the quantum dot  is 

given by[15] : 
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equation[13]: 
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And by using eq.(45) we get 
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Where,
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2-5- The Quantum Dot Local Density of 

States          
We write the quantum dot density of states 

as the sum of the following lorentizain – 

like, )(2)()( 1110 EEE DDD     (49) 
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2-5- The Quantum Dot Local Density of 

States  
The quantum well density of states is given 

by [16] , 
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3 – Calculation and Results 

3 – 1 The Quantum Dot Energy Spectrum Calculation   

GaAs spherical quantum dot is considered in 

our calculation with effective mass 

067.0
DM  a.u[17] and 300DV  meV. 

We calculate the quantum dot eigen energy , 

by using eq.( 10 ), for the orbital 4p where 

we found the 4
th

 intersection of the left side 

of equation ( 10 ) with the line for 1l  and 

4n

 

for different values of quantum dot 

radius 
DR  (see Fig . (4 )). 

The diagrammatic solution of eq.(10) is 

presented in Fig.(4) , where the 4
th

 

intersection of the left side of eq.(10) with 

the line 0E  determines the required p state 

energy level. However, the usual relation 

between the energy level position and the 

quantum dot radius is also checked as shown 

in Fig.(5). 
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Fig.(4): The left side of eq.(10)  value  as a function of energy for different values of DR . 

 

 

 

 

 

 

 

 

 

 
 

Fig.(5) : The quantum dot energy level position as a function of DR . 

3 – 2 The Quantum Well Energy Spectrum Calculation 
To calculate the quantum well energy 

spectrum we get use of eq.(31) where 

)tan( LkZ  and   22/2 zz kk    are 

calculated as a function of energy, 

considering the odd state, for different 

values of well width L , with 

meVVW 390 and uaMW .067.0  . The  

intersection between the two curves that 

represents the eigen energy value WEE   as 

in Fig.(6) 

As the quantum well width increases , the 

quantum well energy level is shifted more 

towards the high negative values of energy. 
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Fig(6): The GaAs  quantum well energy spectrum for different values of well width  . 

 

3 – 3 The Quantum Dot Local Density of States 
We firstly calculate the broadening function 

by using eq.(48) for the different quantum 

numbers lm , and for different values of RD 

and L. These results are used to calculate the 

quantum dot density of states by using 

eq.(49) . Our calculations are presented in 

Fig.(7) for L=12nm and in Fig.(8) for 

L=24nm. 
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Fig.(7):The quantum dot local density of states as function of energy with nmL 12 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(8):The quantum dot local density of states as function of energy with nmL 24 . 
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Fig.(9): The broadening functions 10D  , 11D  and 11D   and WD  as a function of RD with (a):L=12nm , 

(b):L=24nm 

For certain L , as RD increases the maxima 

of the QD density of states is shifted towards 

the higher negative values of energy .          

3 – 4 The Quantum Dot Local Density of 

States 

The quantum well density of states is 
 

calculated as a function of energy for  

L=12nm and L= 24nm ( see Fig.(10)). Many 

maxima are popped , but all these maxima 

are not  perceptible in comparison with the 

last maxima  which is the nearest to the 

energy reference ( E = 0 ) . 

 

 

 

 

 

 
 

Fig.(10) : The quantum well density of states )(EW  (a): when nmL 12  . (b) when 

nmL 24  . 

4 –  Conclusions 

In this work, a study and investigation in the 

physical features of electron properties of 

the coupled QD – QW nanostructure system 

is extendedly presented, where the electronic 

properties of the system are calculated and 

discussed.  

The theoretical model for coherent tunneling 

from one quantum dot to another one 

through quantum well based on the 

transition – probability formulation. This 

model is attractive since it analysis the 

tunneling probability from a zero – 

dimension in terms of the initial state in the 

quantum dot to final state in a two-

dimension (QW).  

In our theoretical model we perform the 

calculations concern to the electrical 

properties firstly by calculating the energy 

spectrum of each subsystem. Where, we use 

the diagrammatic solution of the 

corresponding eigen value equation to 

obtain the 4
th

 p-state energy level for the 

GaAs quantum dot and quantum well. The 

value of the quantum dot energy level or the 
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quantum well energy level are determined as 

a function of the quantum dot radius and the 

quantum well width  respectively. The 

calculated energy values are within the 

estimated one and has a reasonable 

variations with the quantum dot radius and 

the quantum well width and other 

parameters. 

Secondly, we calculate the tunneling rates 

due to coupling interaction between the 

subsystems. The matrix element of the 

coupling interaction is formulated as a 

function of all system parameters. The 

calculated tunneling rates and its variation 

with the quantum dot energy level (i.e. for 

the corresponding radius) and the quantum 

well energy level (i.e. for the corresponding 

width) are investigated. The coupling 

interaction between the quantum dot and the 

quantum well depends on quantum dot 

radius and quantum well width . The 

calculated values of tunneling rate DW   for 

nmL 24  is much lesser than that 

calculated for  nmL 12  .   

The calculated tunneling rates due to 

coupling interactions between the 

subsystems started by calculating the local 

density of states for the 4
th

 p-state of the 

quantum dot coupled with the quantum well, 

DW , which is obtained by summing over 

all the partial density of states for different 

index i.e. m and l   as,  





l

l

DmlDW EE )()(     

with 
22)(

1
)(

mlD

ml
Dml

EE
E







     

When DR increases the value of  DE  is 

shifted toward the higher negative energy 

range and so the peak position of  DW . 

The 4
th

 p-state  quantum dot tunneling rate 

due to coupling with quantum well states, 

DW , decreases with increasing each of 

DR and L . However,  increasing each of  

DR and L  increases the maximum value of 

the peak position as a consequence of 

decreasing DW . 
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 ( QD – QW )الخصبئص الالكترونية لنظبم نقطة كمية مقترنة ببئر كمي 

 
 هشام يوسف الوهدي ، جناى هجيد الوخ ، شاكر ابراهين عيسى 

 

  قسن الفيزياء ، كليت التربيت للعلوم الصرفت ، جاهعت البصرة، البصرة ، العراق

 

 الملخص 

قطة كمية الى بئر كمي ، استندت عمى صياغة احتمالية الانتقال . نفق المتشاكه من نماق أنموذج نظري موسع لقتم اشت     
. في معالجتنا تم (2D)الى جزء النظام  (0D)النفق من جزء النظام  احتمالية هذا الانموذج مثير للاهتمام حيث انه يحمل

بينما تم اخذ عدم الاستمرارية بالكتمة الفعالة بنظر الاعتبار. حساب طيف طاقة النقطة اهمال عرض الحاجز بين اجزاء النظام 
الكمية والبئر الكمي كدالة لنصف قطر النقطة الكمية والبئر الكمي عمى التوالي. بعد ذلك تم صياغة عنصر المصفوفة لتفاعل 

الالكترونية لمنظام. تم توظيف صيغة عنصر المصفوفة  الاقتران بين النقطة الكمية والبئر الكمي بحيث يعتمد عمى الخصائص
لصياغة معدل النفق بين النقطة الكمية و البئر الكمي. في حسابتنا تم اعتماد نقطة كمية كروية وبتر كمي من شبه الموصل 

GaAs ية والانتقالية . كل الخطوات العممية التي تم عرضها في بحثنا تعد خطوة مهمة و ضرورية لدراسة الخصائص الالكترون
 قطب ايسر . –نقطة كمية  –بئر كمي  –نقطة كمية  –لمجهاز قطب ايمن 

 

 الالكترونيات النانوية بئر كمي ،ب مقترنة   الكممات المفتاحية :  نقطة كمية
 

 

 

 


