Estimation of the gill respiratory surface area and some features of the red muscle fibers intwo teleost species

A.J. Mansour

Education Faculty of Pure Sciences, University of Basrah, Basrah-Iraq e-mail: aqeelbio2017@gmail.com

(Received: 25December 2017 - Accepted: 20March 2018)

Abstract - The current study is a comparative analysis of the Gill Respiratory Surface Area (GRSA) and some features of the red muscle fibers including the proportions and diameters of the red muscle fibers in three body regions in two teleosts species; torpedo scad, *Megalspiscordyla*(L.) which belongs to he carangid and the red belly tilapia, Cotodonzillii(Gervaias, 1848) which belongs to cichlids. Fifty fishes (25 fishes for each species) were used in the current investigation. They range in length from 100 to 300 mmandtheir weight ranged between 66 and 305gm. The results showthat the *M. cordula*have GRSA ranged between 78 and 100 mm²/gm whereas it ranged between 56 and 146 mm²/gm in C. zillii. The fish weight wasthe influential factor on the values of the relative GRSA (mm^2/gm) while the total length of gill filaments was the influential factor on the values of the total GRSA(mm²) of the studied fishes which showed significant differences (p<0.05) between the studied species. The difference in the proportions of the red muscle fibers among the three body regions of both species showed a significant difference (P<0.05) between the total length of the fish and the proportions of the red muscle fibers which ranged between 8.16 and 12.80 % in M. cordyla whereas it was between 5.42 and 9.24 % in C. zillii. Also the results presented anincrease in the proportions of the red muscle fibers towardsthe posteriorregion (R3) which were 8.80-12.80 % in M. cordyla while they were 6.24-9.24 %inC. zillii. The results revealed that the approximate diameters of the red muscle fibersvaried between13.70 and 47.85 µm in M. cordyla while they ranged between17.10 and 44.50 µm in C .zillii but were not statistically significant differences(P>0.05)between thetwo species.

Keywords: Fish gill area, fish red muscle, Megalspis, Tilapia.

Introduction

Fish respiration involves the gas exchange between the water and the bloodthrough the gill epithelium. The abilityto acquire oxygen to sustain metabolic processes depends on the gill respiratory surface area and the thickness of the water-blood barrier (Wegner, 2011; Wotton *et al.*, 2015). The gill respiratory surface area measurements infisheshave becomeimportant parameters related to the growth and fish activity (Hughes, 1984, 1989; Mansour, 2008) it was considered the primary site for gaseous and ionic exchange with the environment (Palzenberger and Phola, 1992), due to the presence of the different types of cells in the secondary lamellae such as mitochondrial rich-cell and othertypes of cells (Moyla and Cech, 1996; Evans *et al.*, 1999; Evan *et al.* 2005; Huang *et al.*, 2011). Fish gill structure varies in relation to the activitylevel and habitat, such as fisheswith high metabolic

20

A.J. Mansour

requirements generally have gill specializations and active gas transfer(Graham, 2006; Wegner *et al.*,2010).Gill components including the total length of the gill filaments (L), the number of respiratory lamellae on the filaments per mm (N), and lamellar bilateral surfacearea(Bl), are altered by selective factors to augment gill surface area and increase oxygen uptake from the water(Wegner*et al.*,2010). Roubal (1987) classify the fishes on the basisof varied factors; such as thenumbersand lengths of the gill filaments, values of the total and relative gill respiratory surface area, into threelocomotion groups; active fish, intermediate and sluggish fishes.

In sight of the musculartissue of the fish, it consist ofthreetypes ofmusclefibers; slowred muscles, fastwhite musclesand intermediatepinkmuscles. These types are different insite, color, proportions and functional role (Bone, 1966; love, 1980; Rabah, 2005; Peng and Joe, 2009; Karahmet*et al.*, 2014). The proportions of the muscle fiber types varied from region to another

in the same species and different species(Love,1980). The proportions of the red muscle(0-20 %) is less than of the proportions of white muscle (80%) (Greer-Walker and Pull, 1975) the of results are based on 84 species marine fish.The diameteroftheredandwhitemusclesfibershave a sigmoid characters, the redmusclesfibershave constant diameters ranged from 30 to 40 µmat body length of 25-35 cm, in the same time the diameterof thewhitemusclesfibershavediameters ranged from 80 to 120 µm for the samelength (Greer,1970;Urfiand Talezera,1989; Mansour,1998; 2005; Karmahetet al., 2014).The aim of the present study isto estimatethegillrespiratoryarea andto showthedifferences in proportions and diametersofthe red muscle fibers in three different regions of the body in two species ofteleosts.

Materials and Methods

Sampling:

Twenty five specimen of *Megalspiscordyla*(L.) belonging to the Carangidae, they ranged from 100 to 300 mm in total length and from 185 to 305gm in weight and25 specimen of *Cotodonzillii*(Gervaias, 1848) which belongs to the Cichlidaeranged from 100 to 300 mm T.L and from 66 to 280 gm weight). They were collected from Al-Basra market between November-2016 and January-2017.

Gill Respiratory Surface Area (GRSA):

Twenty five samples from each species were collected. The gills were dissected from each sample and some measurements were made immediately on the fresh gills of one side. All measurements were made under a binocular microscope using a micrometer eyepiece.

The total number of the filaments on each gill arch was counted and the lengths of every twenty filamentswere determined. The spacing of the secondary lamellae was measured on several filaments from each of the gill arches. The area of the secondary lamellae is not so constant, being larger for those lamellae nearest the base of the filaments. The areas of a number of the secondary lamellae from different levels of a given filaments were measured; the measurement was repeated on filaments from different gill arches (Hughes, 1984).The total surface areas of GRSA were estimated using the method developed byHughes (1984), and calculated as follows:

A = L n bl (Hughes, 1984).

Where (A) is the gill respiratory surface area, (L) is the mean total length of all gill filaments,(n) is the mean frequency of secondary lamellae on both sides of the filament per mm, and (bl) is the mean bilateral surface area of the secondary lamellae. The allometric relation between GRSA and body weight was expressed as follows:

Y =aw^b.....(Satoraand Romek, 2010).

Proportions of the Red Muscle Fibers:

To calculate the proportions of red muscle fibers in both species offishes, three sections from the body of the fish were taken (R1; anterior of the dorsal fin, R2; posterior of the dorsal fin and R3; near the caudal peduncle). They were photographed and projected onto tracing paper and the outline of the red muscle traced. Tracing of the red muscle were cut and weighted and proportions of both types of fibers (red and white) were expressed as percentage of the total area of cross section(Broughton *et al.*, 1981).

Diameter of the Red Muscle Fiber:

Tomeasure the diameters, 50 red muscle fibers in frozen sections from (R1, R2 and R3 rejoin) samples were stained with Sudan Black B, and measured directly using an ocular micrometer. Since the cross-sectional outline of the red muscle fibers are not perfectly circular, measurements were taken for the largest and the smallest diameters of the red muscle fibers (Al-Badri*et al.*, 1991).

Statistical Analysis:

In order to determine the differences between the rates of the fish weight and components of the gill respiratory surface areaas well as the differences between the total length of the fishes and the proportions, diameters of the redmuscle fibers from three different regions of the body of the fishes were used. The Statistical Package for Social Sciences (SPSS 16) was used. The significance was considered under the probability of P<0.05. Excel program was used to calculate the correlation coefficient between variables.

Results

The present results indicate differences in the componentsofthegill respiratory surface area which include the (L): total length of gill filaments (number of gill filaments \times mean of gill filament length), N: number of secondary lamellae per mm and (bl) and area of bilateral secondary lamellae, these components had lowest values in the smallest weight groups in comparison with the largest weight groups (Tables 1 and 2). The totallength of gillfilament in *M. cordyla*was between 11860.10 and 17830.20 mm (Table 1) whereas,they were ranging between 6830.40 and 10860.0 mm in *C. zillii*(Table 2). The statistical analysis showed that there is apositive correlation between the total length of the gill filaments and the fish weight in both species of fishes which were 0.996 and 0.993 in *M. cordyla* and *C.zillii*, respectively (Table 3 and Fig. 1).The statistical analysis showed significant differences (P<0.05) between the two species (Table 4). The results showed an approximate values of each (N, Bl) in the two species which were 38.40-44.30 and 0.030-0.044 mm in *M. cordyla* (Table 1),whereas they were 36.50-42.50 and 0.030-0.036 mm in *C. zillii*(Table 2).

22A.J. Mansour

Table 1. Means of fish weightand length and the components of the gill respiratory surface area in *M. cordyla*.

Total length groups (mm)	Mean Total length (mm)	Mean fish weight (gm)	No. of fish	Mean total length of gill filaments (mm)	Mean no. of secondary lamellae	Mean bilateral secondary lamellae area (mm)	Mean total gill area (mm²)	Mean relative gill area (mm²/gm)
100-120	125 60	185 50	5	11860.10	38.40	0.044	18027.20	100.15
100 139	9 135.00	105.50	Э	±98.3	±0.54	±0.002	± 220.30	±0.98
140-170	165.80	210.0	F	12965.10	40.20	0.041	19944.0	99.72
140-1/9	140-1/9 105.80	210.0	5	± 130.20	±0.48	±0.002	±150.60	±0.84
180-210	210.20	240.0	F	14660.0	42.10	0.034	20934.5	87.20
100-219	9 210.20 2	240.0	5	±85.90	±0.22	±0.003	± 105.40	±6.30
220-250	225 80	975 40	-	16450.8	43.40	0.032	22108.8	80.39
220-259 22	225.00	2/5.40	5	± 145.80	±0.14	±0.002	± 325.10	±4.60
260-200	275 60	205 40	-	17830.2	44.30	0.030	23535.6	78.48
260-300 275.60	2/5.00	303.40	Э	± 135.12	±0.32	±0.001	±95.66	±5.20

± Standard Deviation.

Table 2. Means of fish weight and length and the components of the gill respiratory surface area in *C.zillii*.

Total length groups (mm)	Mean Total length (mm)	Mean fish weight (gm)	No. of fish	Mean total length of gill filaments (mm)	Mean no. of secondary lamellae	Mean bilateral secondary lamellae area (mm)	Mean total gill area (mm²)	Mean relative gill area (mm²/gm)
100-139	125.60	66.10	5	6830.40	36.5	0.036	8786.80	146.40
100 139	100 139 123.00	00.10	5	±72.90	±0.54	± 0.003	± 130.50	±5.26
140-170	140-170 160.40	96.10	5	7582.10	39.16	0.034	9586.40	112.78
140-1/9 100.4	100.40			± 180.15	±0.75	± 0.002	± 215.18	±10.22
180-210	190.010 000.10	145 90	5	8480.36	40.50	0.032	10547.10	87.89
160-219 200.10	200.10	145.02		± 260.76	±0.54	± 0.002	±94.50	± 23.20
220-250	225 80	207.08	-	9504.17	41.50	0.032	11852.80	69.26
220-259 225	225.00	207.08	5	± 267.37	±0.60	±0.003	± 124.13	±18.70
260,200	075 60	090.10	-	10862.0	42.50	0.030	13658.40	56.90
260-300	275.60	280.10	5	±22.80	±0.52	±0.002	±120.40	±12.28

± Standard Deviation.

Table 3. Correlation coefficients (r) between means of fish weight and the components of the gill respiratory surface area in *M. cordyla* and *C. zillii*.

The bludled Features inteoragia C. Zatt

Total length of gill filaments	0.996	0.993
No. of secondary lamellae per mm	0.979	0.919
Bilateral secondary lamellae area	-0.973	-0.946
Total gill surface area	0.981	0.997
Relative gill surface area	-0.967	-0.978

Estimation of the gill respiratory surface area and some features of the muscle 23

Figure 1. The relationships between the total length of gill filaments and total weight in *M.cordyla and C.zillii*.

Table 4. Statistical analysis of the components of gill respiratory surface area in *M. cordyla*and *C. zillii*.

The Studied Features	F - values	Values of significant level	Statistical Differences
Total length of gill filaments	21.881	0.02	Significant
No. of secondary lamellae per mm	1.459	0.262	Non-significant
Bilateral secondary lamellae area	2.667	0.141	Non-significant
Total gill surface area	62.016	0.000	Significant
Relative gill surface area	0.33	0.860	Non-significant

24A.J. Mansour

However, the statistical analysis of N and Bl indicate no significant differences (P>0.05) between the two species of fishes(Table 4), while the current results showed different values

of the correlation coefficient between the two fish species in N andBlwhich were 0.979 and 0.919 in *M.cordyla* and *C. zillii*, respectively (Table 3), whereasthe values were recorded - 0.973 and -0.946 in*M.cordyla* and *C.zillii*, respectively (Table 3).

The current results showed a difference in the values of the total gill respiratory surface area (mm²) between both species, *M.cordyla*had the largest values compared with *C.zillii*, as the range were 18027.20 and 23535.6 mm² in *M.cordyla*(Table 1), whereas the total gill area were ranged between 8786.80 and 13658.40 mm² in*C.zillii*(Table 2).

The statistical analysis results showed a positive correlation between the total respiratory surface area and fish weight in both fishes which were 0.981 and 0.997 in*M. cordyla* and *C.zillii*, respectively (Table 3 and Fig. 2). Moreover, the statistical analysis showed significant differences (P<0.05) between the two species of fish (Table 4).

The results indicate difference in the two fish species in the values of the relative gill respiratory surface area (mm^2/gm) which was ranging between 78 and 100 mm^2/gm in *M.cordyla* and between 56 and 146 mm^2/gm in *C.zillii*(Tables 1 and 2), but there were no significant differences (P>0.05) between the two species of fishes (Table 4).

In spite of the difference studied fishes in weights of the two species (Tables 1 and 2), the results showed anegative correlation between the relative gill respiratory surface area and the fish weight in bothspecies: -0.967, -0.978in *M. cordyla* and *C.zillii*(Table 3 and Fig. 3), respectively.

Tables (5 and 6) showed therates of the proportions and diametersofthe red muscle fibers in the twospecies. The results elucidated the differences in the proportions of the red muscle fibers in the three different regions of fish. They ranged between 8.16 and 11.14 % in R1 in *M.cordyla* and between 5.42 and 8.36 % in R1 in *C.zillii* (Tables 5 and 6) while they ranged from 8.40 to 12.20 % and from 5.82 to 8.50 % in the second region (R2) in *M.cordyla* and *C.zillii*, respectively. Whereas, they ranged from 8.80 to 12.80 % and from 6.24 to 9.24 % in the third region(R3) for *M.cordyla* and *C.zillii*, respectively (Tables 5 and 6).

The current results showed increasing proportions of the red muscle fibers towards the third region (R₃) in the two species. The results showed positive correlation between the proportions of the red muscle fibers and fish length in both species which were 0.971, 0.944, 0.987 in R₁, R₂ and R₃, respectively in *M. cordyla* and 0.992, 0.985,0.976 in R₁, R₂ and R₃, respectively in *C.zillii*,respectively(Table 7 and Figs. 4 and 5). The results elucidated significant differences(P<0.05) between the two species and in the three regions (Table 8).

The approximate means of the diameters of the red muscle fibers in studied regions (R1,R2 andR3)was found to be ranging from 23.98 to 47.85 μ in R1 in *M.cordyla*(Table 5) whereas in R1 in *C. zillii*was26.30-44.50 μ (Table 6). In R2 and R3 the diameters of the red muscle fibers in *M. cordyla*ranged from 17.30 to 45.26 μ and from 13.70 to 40.30 μ in *M.cordyla*(Table 5), whereas it ranged from 20.50 to 41.20 μ and from 17.10 to 38.25 μ in R2 and R3 of*C.zillii*(Table 6). However, the results did not show significant differences (P>0.05)between the two species(Table 8).

Estimation of the gill respiratory surface area and some features of the muscle 25

Figure 2. The relationships between the total gill area and total weight in *M.cordyla* and *C.zillii*.

26A.J. Mansour

Estimation of the gill respiratory surface area and some features of the muscle 27

Table 5. Means of fish weight and length and the proportions and diameters of the red muscle fibers in *M. cordyla*.

Length groups (mm)	Total length (mm)	Fish weight (gm)	No. of fish	Mean proportions of red muscle fibers in R1	Mean proportions of red muscle fibers in R2	Mean proportions of red muscle fibers in R3	Mean diameters of red muscle fibers in R1	Mean diameters of red muscle fibers in R2	Mean diameters of red muscle fibers in R3
100-139	135.60	185.50	5	8.16 ±0.06	8.40 ±0.05	8.80 ±0.04	23.98 ±2.34	17.13 ±2.45	13.70 ±3.80
140-179	165.80	210.0	5	8.40	9.80	10.20	27.40	24.12	20.55

				±0.08	±0.08	±0.06	±1.69	±1.80	±2.68
190 010 010 00	040.0	-	9.24	10.40	10.90	37.67	34.25	27.50	
160-219	210.20	240.0	5	±0.06	±0.08	±0.08	±5.58	±4.60	±3.84
000 050	005.80	075 40	-	10.32	10.80	11.40	44.52	41.20	36.15
220-259	-259 225.00 2/5.40	10 5	±0.08	±11.20	±0.04	±3.82	±2.60	±2.69	
260.200	075 60	205 40	-	11.14	11.20	12.80	47.85	45.26	40.30
200-300	2/5.00	305.40	5	±0.06	±0.08	±0.07	±1.94	±2.80	±3.68

± Standard Deviation.

Table 6. Means of fish weight and length and the proportions and diameters of the red muscle fibers in *C. zillii*.

				Mean	Mean	Mean	Mean	Mean	Mean										
Longth	Total	Fich	No	proportions	proportions	proportions	diameters	diameters	diameters										
roupa	longth	risi	NO.	of red	of red	of red	of red	of red	of red										
(mm)	(mm)	(gm)	fich	muscle	muscle	muscle	muscle	muscle	muscle										
(IIIII)	(IIIII)	(giii)	IISII	fibers in	fibers in	fibers in	fibers in	fibers in	fibers in										
				R1	R2	R3	R1	R2	R3										
100-120	195 60	66 10	_	5.42	5.82	6.24	26.30	20.50	17.10										
100-139	125.00	00.10	5	±0.24	±0.23	±0.22	±2.65	±2.40	±1.82										
140-170	160.40	06 10	_	6.24	6.36	6.58	30.82	27.40	20.40										
140-1/9	100.40	90.10	э	±0.34	±0.18	±0.16	±2.48	±3.24	±1.38										
180-210	200.10	145 80	_	6.82	7.12	7.48	37.60	34.25	30.80										
100-219	200.10	145.62	143.02	143.02	143.02	143.02	143.02	145.02	143.02	143.02	143.02	143.02	э	±0.24	±0.20	±0.23	±3.68	±4.60	±3.24
220-250	225 80	207.08	_	7.28	7.32	7.82	40.20	37.60	35.15										
220-259	225.00	207.08	э	±0.35	±0.10	±0.18	±1.50	±1.46	±2.40										
260-200	275 60	280.10	_	8.36	8.50	9.24	44.50	41.20	38.25										
200-300	2/5.00	200.10	э	±0.47	±0.44	±0.16	±1.72	±2.25	±1.50										

± Standard Deviation.

 Table 7. Correlation coefficients (r) between means of fish length and the proportions and diameters of the red muscle fibers in *M. cordyla* and *C.zillii*.

The Studied Features	M. cordyla	C. zillii
Rate of proportions of red muscle fibers in R1	0.971	0.992
Rate of proportions of red muscle fibers in R2	0.944	0.985
Rate of proportions of red muscle fibers in R3	0.988	0.976
Rate of diameters of red muscle fibers in R1	0.972	0.993
Rate of diameters of red muscle fibers in R2	0.978	0.985
Rate of diameters of red muscle fibers in R3	0.976	0.978

Figure 4. The relationships between the proportions of red muscle fibers and total length in three regions (R1, R2 and R3) in *M.cordyla*. Estimation of the gill respiratory surface area and some features of the muscle 29

Figure 5. The relationships between the proportions of red muscle fibers and total length in three regions (R1,R2and R3) in *C. zillii*. 30A.J. Mansour

Figure 6. The relationships between the proportions of red muscle fibers and total length in three regions (R1, R2 and R3) in *M.cordyla*.

Estimation of the gill respiratory surface area and some features of the muscle 31

Figure 7. The relationships between the proportions of red muscle fibers and total lengthin three regions (R1, R2 and R3) in *C.zillii*. 32A.J. Mansour

Table 8. Statistical analysis of the proportions and diameters of red muscle fibers in *M.cordyla* and *C.zillii*.

The Studied Features	F – values	Values of significant level	Statistical Differences
Rate of proportions of red muscle fibers in R1	12.220	0.008	Significant
Rate of proportions of red muscle fibers in R2	18.268	0.003	Significant
Rate of proportions of red muscle fibers in R3	15.690	0.004	Significant
Rate of diameters of red muscle fibers in R1	0.005	0.946	Non-Significant
Rate of diameters of red muscle fibers in R2	0.001	0.976	Non-Significant
Rate of diameters of red muscle fibers in R3	0.012	0.916	Non-Significant

The current results revealed a decrease in the means of diameters of the red muscle fibers in third region (R3) in the two species, it ranged from 13.70 to 40.30 μ and from 17.10 to 38.25 μ in *M. cordyla* and *C. zillii*, respectively (Tables 5 and 6), but the average of diameters of the red muscle fibers increased with increasing the fish length in both species, therefore the results showed a positive correlation between the diameters of the red muscle fibers and fish length in both species which were 0.972, 0.978, 0.976 in R1, R2 and R3in *M. cordyla* while 0.993, 0.985,0.978 in R1, R2 and R3 those of *C. zillii* (Table 7 and Figs. 6 and 7).

Discussion

The gills are related to many important functions offishes, they are considered the main respiratory sites ofgas exchange, excretion and osmoregulation in all fishes (Moyle and Cech, 1996). While the secondary function is related to feeding habits where the organization of gill filaments and rakers reflected the feeding habits of the fish (Fernandes*et al.*, 2003; Kumari*et al.*, 2009). Therefore, the results of the present study showed differences in the average total length of the gill filaments and number of the secondary lamellae which varied with the body weight of *Megalspiscordyla* and *Cotodonzillii*, all of these factors affect the values of the gill respiratory surface area. Especially the total length of the gill filament which wereinfluential factor on the values of the total respiratory gill area in the two species.

In addition, increasing the length of gill filaments in the gills reflects the activity and growth of fish, which leads to the growth of new gill filaments with the fish grows (Hughes, 1989;Mazonet al.,1998).These results agree with many previous studies such as those of Mansour (2005), Karakatsouliet al.(2006),Satora and Romek (2010),Oda(2015).

However, measurements of other factors (N,bl)does not affecton values of total respiratory surface area, this is probably because of the values approximation of the number and bilateral secondary lamellea (N, bl) in both fishspecies. The current results detected a negative relationships between the body weight and the gill surface area in both species, and this is in accordance with the results of Hughes (1984). This indicate that the lowest weight groups had high gill surface area

Estimation of the gill respiratory surface area and some features of the muscle 33

compare with high weight groups which had lowgill surface area which represents an increasing activities of the smaller fishes compared with larger fishes and that is a reflection to the mode of life and metabolic requirements of fish (Hughes, 1989; Mazon *et al.*, 1998, Mansour, 2005; Saliu and Olonire, 2008; Wenger *et al.*, 2010). Thus, *M. cordyla* and *C. zillii* may have an intermediate activity, according to the classification of Roubal (1987).

The muscular tissue constitute up to 60-80% of the fish body weight. The fish swimusinga combination of paired, unpaired fins and undulations of the myotomal muscles (Johnston, 1981; Altringham and Ellerby, 1999; Adamek*et al.*, 2017). Red muscle fibers usually constitute less than10 % of the myotomalmusculature. Also, the red muscle fibers are called slow fibers and usedmainly for sustained swimming (Sanger and Stoiber, 2001).

The fish show variations in the proportions of the red muscle fibers which reflect the differences in the distribution of red muscle in the body of the fish (Love, 1980), in addition to the increase of the proportions of red muscle towards the posterior region of the fish which indicates an increase in the numbers of the fibers(hyperplasia) (Karahmet*et al.*, 2014; Oda, 2015; Adamek*et al*, 2017). Also, the current results showed an increase in the proportions of the red muscle fibers with the increase offish length in both species which represents the growth and development of the redmuscle fibers, this increaselends to support hypothesis that red muscle is associated with sustained speeds (Greer-Walker, 1970; Al-Badri, 1985; Mansour, 2005).

Musclegrowth is associated with the recruitments of new fibers (hyperplasia) and/or the increase in the volume of muscle fibers (hypertrophy), such that the muscle may contain fibers with a wide range of diameters, the red muscle fibers usually are small in diameter (25- 45μ m) (Kiessling*et al.*, 2006; De Mello *et al.*, 2016).

The present study showed differences in the diameters ofred muscle fibers in different regions in the two species and a decrease in diameters of the red muscle fibers in the posterior region (caudal peduncle) which represents amuscle growth and development in the fish by the two processes; hyperplasia and hypertrophy (Adamek*et al.*, 2017). The increase of the numbers of muscle fibers in the posterior region of the fish reflects the importance of this region in fish locomotion(Al-Badri, 1985;Mansour, 1998, 2005).

References

- Adamek, D., Rzepkowska, M., Panagiotopoulou, H., Ostaszewska, T., Fajkowska, M. Kamaszewski, M. and Kolman, R. 2017. Morphological Differences of White Muscle Fibers and Genetic Diversity of Fast and Slow Growing Atlantic Sturgeons (*Acipenseroxyrinchus*). Turkish Journal of Fisheries and Aquatic Sciences, 17: 959-966.
- Al-Badri, M.E.H. 1985. Aspect of the red and white myotomal muscles in Arabian carpet shark, *Chiloscylliumarabicum*(Gobanov, 1980) from Khor-Abdulla, north-west Arabian Gulf, Iraq. Cybium, 9: 93-95.

- Al-Badri, M.E.H., Al-Daraji, S.A., Neshan, A.H. and Yesser, A.K.T. 1991. Studies on the swimmingmusculature of the *Cyprinuscarpio* (L.) and *Liza abu* (Heckel, 1843). 1. Fiber types. Marina Mesopotamica, 6(1): 155-168.
- Altringham, J.D. and Ellebery, D.J. 1999. Fish swimming patterns in muscle function. J. of Exp. Biol., 202: 3397-3403.

34

A.J. Mansour

- Bone, Q. 1966. On the function of two types of the myotomal muscle fibers in Elasmobranch fish. J. Biol.Ass.U.K.,46: 321-349.
- Broughton, N.M., Goldspink, G. and Jhones, N.V. 1981. Histological differences in the lateral musculature of O-group roach, *Rutilusrutilus* (L.)from different habitats. J. Fish. Biol., 18: 117-122.
- De Mello, F., Felippe, D., Godoy, L.C., Lothhammer, N.,Guerreiro, L.R.J. and StreitJr, D.P. 2016. Morphological and morphometrics analysis of skeletal muscle between male and female young adult, *Colossomamacropomum* (Characiformes: Serrasalmidae). Neotropical Ichthyology, 142(2): e150149.
- Evan, D.H., Peter, M.P. and Keith, P.C. 2005. The multifunctional fish gill: Dominate site of gas exchange, Osmoregulation, Acid-Base regulation and Execration of nitrogenous wastes. Physiol. Rev., 85: 97-177.
- Evans, D.H., Piermarini,P.M. and Potts,W.T.W.1999. Ionic transport in the fish epithelium. J Exp. Zool. 283: 641-652.
- Fernandes, M.N., Castro, F.J. and Mazon, A.F. 2003. Scanning electron microscopy of the gill raker of the Loricariid fish, *Rhinelepisstrigosa*. ActaMicrosc., 12:511-522.
- Graham, J.B. 2006. Aquatic and aerial respiration. In: Evans. DH, Claiborne JB, editors. The Physiology of Fishes. 3rded Boca Raton: CRC Press. PP: 85-117.
- Greer-Walker, M. 1970. Growth and development of the skeletal muscle fibers of the cod, *Gadusmorhua* (L.). J. de Conseil International, 33(2): 228-244.
- Greer-Walker, M and Pull, G.A. 1975. A survey of red and white muscles in marine fish. J. Fish. Biol., 7: 295-300.
- Huang, C.Y., Lin, C.P. and Lin, H.C. 2011. Morphological and biochemical variations in the gills of 12 aquatic air-breathing Anabantoid fish. Physiological and Biochemical Zoology, 84(2): 125-134.
- Hughes, G.M. 1984. Measurements of respiratory area in fish: Practices and problems. J.Mar. Biol. Ass. U.K., 64: 637-655.
- Hughes, G.M. 1989. On different methods available for measuring the area of gill secondary lamellae of fish. J. Mar.Biol.Ass. U.K., 70: 13-19.
- Johnston, I.A. 1981. Structure and function of fish muscles. Symp.Zool.Soc.Lond., 48: 71-113.
- Karahmet, E., Viles, A., Katica, A., Malco, C. and Toroman, A. 2014. Differences between white red muscle fibers diameter in three Salmon fish species. Biotechmology in Husbandry, 30(2): 349-356.
- Karakatsouli, N., Tarnaris, K., Balaskas, C. and Papoutsoglou, S.E. 2006. Gill area and dimensions of gill head sea BreamsparusauartaL. J.Fish. Biol., 69(1): 291-299.
- Kiessling, A., Ruohonen, K. and Bjørnevik, M. 2006. Muscle fiber growth and quality in fish. Arch. Tierz., Dummerstor, 49: 137-146.
- Kumari, U.,Yashpal, M., Mittal, S. and Mittal, A.K. 2009. Surface ultrastructure of gill arches and gill rakers in relation to feeding of an Indian major carp, *Cirrhinusmrigala*. Tissue Cell, 41(5):318-250.
- Love, R.M. 1980. The chemical biology of fish. Vol.2. Academic Press. London.
- Mansoor, A.J. 1998. A study of muscles and gills of three species of Clupeiformes. M.Sc. Thesis, Education College, Basrah University, 85 pp.
- Mansour, A.J. 2005. A comparative study on some morphological and histological aspects of some native fishes in southern Iraq. Ph.D. Thesis, Education College, Basrah University, 145 pp.

Estimation of the gill respiratory surface area and some features of the muscle 35

- Mansour, A.J. 2008. Morphology of gill rakers and locomotry muscles of *Otolith rubber* (Schneider, 1801) in southern Iraq. Marina Mesopotamica, 23(2): 399-417.
- Mazon, A.de.F., Fernandes, M.N., Nolasco, M.A. and Severi, W. 1998. Functional morphology of gills and respiratory area of two active rheophilic fish species, *Plagioscionsquamosissimus* and *prochilodusserofa*. J. Fish Biol., 52(1): 50-61.

- Moyle, P.B. and Cech, J.J.1996. Fishes: An Introduction to Ichthyology. 3rd edition. Prentice Hall, Upper Saddle River, New Jersey.
- Oda, Y.W. 2015. Study proportions and chemical composition of red and white muscles of Tilapia zilliiand Acanthopagruslatus. Iraqi Journal of Aquaculture, 12(1): 17-34.
- Palzenberger, M. and Phola, H. 1992. Gill surface area of water-breathing freshwater fish. J. Fish. Biol., 2: 187-216.
- Peng, Z. and Joe, M.R. 2009. Fish muscle. Chapter 14. Applied Muscle Biology and Meat Science, pp: 275-282.
- Rabah,S. 2005. Light microscope study of Oncorhynchuskisutch muscledevelopment. Egyptian Journal of Aquatic Research, 31(1):303-313.
- Roubal, F.R. 1987. Gill surface area and its components in the yellow fin bream, Acanthopagrusaustralis(Gunther). Aust. J. Zool., 35: 25-34.
- Saliu, J.K. and Olonire, G.T. 2008. A comparative study of the gill anatomy of ClariasangullarisChrysichthyeslongifilis and Synodontismembraneceus from Asa reservoir and Kanj reservoir, Negeria. LifeSci. J., 5(1): 85-87.
- Sanger, A.M. and Stoiber, W. 2001. Muscle fiber diversity and placticity. In: Muscle development and growth (Ed: Ian A. Johnston) Academic Press, London., pp: 187-250.
- Satora, L. and Romek, K. 2010. Morphometry of gill respiratory area in ruffe, Gymnocephaluscernus(L.). Arch. Pol. Fish., 18: 59-63.
- Urfi, A.J. and Talesara, G.L. 1989. Histo-morphology of length-related changes in myotomal muscle of catfish, Heteropneustesfossilis(Bloch). J. Fish. Biol., 43: 639-641.
- Wegner, N.C. 2011. Gill Respiratory Morphometrics. Encyclopedia of fish physiology: Form Genome to Environment. Academic Press, pp: 803-811.
- Wegner, N.C., Sepulveda, C.A., Bull, K.B. and Graham, J. 2010. Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand Teleosts: Scombrids and Billfishes. J. of Morphol., 271:36-49.
- Wotton, T., Sepulveda, C.A. and Wegner, N.C. 2015. Gill morphometrics of the Thresher shark (Genus Alopias): Correlation of gill dimension with aerobic demand and environment oxygen. J. of Morphol., 267: 589-600.

تقدير المساحة السطحية التنفسية للغلاصم وبعض الخصائص للعضلات الحمر في نوعين من الأسماك العظمية

عقيل جميل منصور قسم علوم الحياة، كلية التربية للعلوم الصرفة، جامعة البصرة، العراق

المستخلص - تناولت الدراسة الحالية إجراء مقارنة للمساحة السطحية التنفسية للغلاصم وبعض الخصائص للعضلات الحمر التي تضمنت نسب وأقطار الألياف العضلية الحمر 36A.J. Mansour

في ثلاث مناطق جسمية في نوعين من الأسماك العظمية هما سمكة (.Megalspiscordyla التي تعود إلى عائلة Carangidae وسمكة(Carangidae, 1848) Cotodonzillii (Gervaias, 1848) التي تعود إلى عائلة Cichlidae. استخدمت25 سمكة من كل نوع تراوحت أطوالهابين100 و 300 ملم وأوزان بين66 و 305 غم. أوضحت النتائج امتلاك M. cordyla مساحة تنفسية نسبية تراوحت بين 78-100ملم²/غم بينما تراوحت بين 56-146ملم²/غم فيC.zillii، وكان وزن الأسماك العامل المؤثر في قيم المساحة التنفسية النسبية للغلاصم بينما كان معدل الطول الكلى للخيوط الغلصمية العامل لي يم محمد المساحة التنفسية المطلقة (ملم 2) والتي أظهرت اختلافات معنوية (P>0.05) بين الأنواع المدروسة. أظهر الاختلاف في نسب الألياف العضلية الحمر بين المناطق الجسمية الثلاث في كلًّا النوعين المدر وسين وجود اختلَّافات معنوية (P>0.05) بين الطول الكلي للأسماك ونسب الألياف العضلية الحمر والتي تراوحت بين 8.16-12.80% في M. cordyla بينما كانت 5.42-9.24% في C. zillii، كما أوضحت النتائج زيادة نسب الألياف العضلية الحمر باتجاه المنطقة الخلفية للجسم (R3) والتي تراوحت بين 8.80 و %12.80 في M. cordyla بينما تراوحت بين6.24 و %9.24 في C. zillii. بينت النتائج الحالية تقاربا في قيم أقطار الألياف العضلية الحمر في الأنواع المدروسة والتي تراوحت بين 13.70 و 13.75مايكرون في M. cordyla بينما تراوحت بين17.10 و 44.50مايكرون في C. zillii لكن النتائج الإحصائية لم تظهر اختلافات معنوية (P<0.05) بين الانواع المدروسة.

الكلمات المفتاحية: مساحة الغلاصمللأسماك، عضلات الأسماك، Megalspis ، Tilipia