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ABSTRACT 

 
In this paper, we present our theoretical treatment for electron transport through aserially coupled T-shape-
double-quantum dotstructure attached to the donor and left lead on the left side, while on the right side it is 
attached to the acceptor and right lead. Our treatment is based on the time-dependent Anderson-Newns 
Hamiltonian neglecting the correlation effects. The equations of motion are derived for all subsystems, then the 
steady state is considered to obtain an analytical expression for the transmission probability as a function of the 
system energies. The subsystems eigenvalues, the coupling interaction between them as well as the leads band 
width all are taken into consideration and highlighted. We employ the transmission probability to calculate the 
thermoelectric properties for this structure and investigate quantum interference effects on the thermoelectric 
properties. 
 
Keywords: Quantum dot; thermoelectric properties; figure of merit; antiresonance. 
 

1. INTRODUCTION 
 
Energy conversion based on thermoelectric properties 
of solid-state materials has been attracting recently 
renewed attention, especially in the case of 
nanostructures [1,2]. Theoretical predictions [3-5] as 
well as experiments [6-8] show that nanostructures 
exhibit higher efficiencies than bulk materials,making 
them very attractive for their potential application in 
energy-conversion and cooling devices. The 
thermoelectric efficiency of thermoelectric devices 
measured by a dimensionless figure of merit ZT. A 

figure of meritused to characterize the performance of 
a device. Figure of merit can be calculated by the 

following formula �� = ���� (��� + ��� )� , where � 

is the thermopower, � is electrical conductance, � is 
the temperature in metallic electrodes, ���  and ���  are 
electron and phonon thermal conductance, 
respectively [9]. 
 
To increase the magnitude of dimensionless figure of 
merit ZT, large thermopower, high electrical 
conductance, and low thermal conductance are 
required. However, these physical quantities 



 
 
 
 

AL-Badry et al.; JOBARI, 6(4): 239-247, 2015 
 
 

 
240 

 

areinterdependent in bulk materials according to the 
Wiedemann-Franz law that the quantity � ��⁄  
remains constant [3]. Therefore thermoelectric 
efficiency in bulk materials rarely exceed 1 [10]. To 
enhance the thermoelectric efficiency, many 
approaches have been proposed, and one of which is 
to reduce the system dimensionality. 
 
Some higher values of S and ZT were found in low-
dimensional systems due to its sharp change in the 
density of states near the Fermi level [11,12] and the 
significant reduction of phonon thermal conductance 
���  due to the strong phonon scattering by the 
interfaces between the nanostructures [13].  
 
However, due to the quantum nature of the electrons, 
the thermoelectric properties are determined by 
quantum effects [14,15]. The small sizes of QDs make 
the phase coherent of waves become more important, 
and quantum interference phenomena originate when 
the particles moves along different transport paths 
[16]. 
 
It is well known that, the zero point of the 
conductance spectrum, called antiresonance, 
originates from the destructive quantum interference 
among electron waves passing through different 
transmission paths [17]. With respect to the coupled-
QD structures, the typical ones are the structures of 
the so-called T-shaped QDs [18-22]. A unique 
property of electron transport through the T-shaped 

QD systems is that the positions of the antiresonance 
coincide with the eigenvalues of the side-coupled 
QDs [17]. 
 
In this work, we will present our theoretical treatment 
to formulate expression for the transmission 
probability of the electron transport throughout a 
serially coupled T-shape-double-quantum dot 
structure to study and calculate the thermoelectric 
properties for the considered system. So, all the 
system eigenvalues and coupling interactions are 
taken into consideration to give obvious view for the 
system dynamics.  
 

2. THEORY 
 
In this work, the considered system is left lead-donor- 
serially coupled T-shape-double-quantum dot-
acceptor-right lead see Fig. 1, where the chain 
consists of N quantum dotsconnection like T-shape. 
General formula for the transmission probability of 
this systemwill be derived, which is described by 
using time-dependent and spin less Anderson-Newns 
Hamiltonian [23] neglecting thecorrelationinteractions 
in all subsystems.Anderson-Newns Hamiltonianis a 
very rich Hamiltonian, which is capable of describing 
a diversity of physical situations, depending on the 
values of correlation interactions and coupling 
interaction between subsystems, and of the 
degeneracy of the local states. 

 

 
 

Fig. 1. Shows serially coupled T-shape-double-quantum dot structure 
 

The Hamiltonian of system is given by: 
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where ��(�)= ��
�(�)��(�)  and ��

�(�)(��(�))  denotes 

annihilation (creation) operators, with � = �, �, �, �� 
and �� . The index �� being a set of quantum numbers, 
with � = �, � . Notably, the summation in the third 
term in Eq. (1) is over all quantum dots (each one 
with one effective energy level ��). The sixthterm is 
concerning the coupling interaction between the 
donor(with one effective energy level �� ) with 
quantum dot of number 1. The seventh term is 
concerning the coupling interaction between the 

acceptor (with one effective energy level �� ) with 
quantum dot of number (� − 1). The eighth term 
describes the interdot interactions between central 
quantum dot. While the ninth term represents the 
interdot interactions between central quantum dot and 
side quantum dot.In this formula, we consider the 
number 1 is the one that connected to the donor while 
the quantum dot number (N-1) is the one that 
connected to the acceptor. 

 
The equations of motion for ��(�) can be obtained by using  [24], 

 

�̇�(�) = −�
�� (�)

���
�(�)

                                                                                                                                                           (2) 

 
to get, 
 

�̇�(�) = −�����(�)− ������(�)− � � ����
���

(�)

��

                                                                                            (3) 

 

�̇�(�) = −�����(�)− ���(���)����(�)− � � ����
���

(�)

��

                                                                                (4) 

 

�̇�(�) = −�����(�)− ������(�)− ������(�)− ������(�)                                                                                     (5) 
 

�̇�� �(�) = −���� ���� �(�)− ��(�� �)���(�)����: ���                                                                                           (6) 
 

�̇�� �(�)= −���� ���� �(�)− ��(�� �)���(�)− ��(�� �)(�� �)��� �(�)− ��(�� �)(�� �)��� �(�)      ����: ��� (7) 
 

�̇���(�) = −���������(�)− ��(���)���(�)− ��(���)���(�)− ��(���)�������(�)                                     (8) 
 

�̇��
(�) = −����

���
(�)− �������(�)                                                                                                                          (9) 

 

�̇��
(�) = −����

���
(�)− ���� ���(�)                                                                                                                       (10) 

 
Where �̇�� �(�) for even numbered dots, while �̇�� �(�) for odd numbered dots 
 
For steady state, we define ��(�) by the following: 

 
��(�) = ��̅(�)�����                                                                                                                                                                             (11) 

 

where E denotes the system eigenvalues, then accordingly,�̅̇
�(�) = 0 

 

��̅(�)(� − ��) = �����̅(�)+ � ����
��̅�

(�)

��

                                                                                                    (12) 

 

��̅(�)(� − ��)= ��(���)��̅��(�)+ � ����
��̅�

(�)

��

                                                                                         (13) 

 
��̅(�)(� − ��) = �����̅(�)+ �����̅(�)+ �����̅(�)                                                                                          (14) 
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��̅� �(�)(� − ��� �)= �(�� �)���̅(�)                                                                                                                        (15) 
 
��̅� �(�)(� − ��� �)= �(�� �)���̅(�)+ �(�� �)(�� �)��̅� �(�)+ �(�� �)(�� �)��̅� �(�)                                      (16) 
 
��̅��(�)(� − ����) = �(���)���̅(�)+ �(���)���̅(�)+ �(���)�����̅��(�)                                              (17)  

 

��̅�
(�)�� − ���

� = ������̅(�)                                                                                                                                 (18) 

 

��̅�
(�)�� − ���

� = ��� ���̅(�)                                                                                                                                (19) 

 

Then the transmission probability amplitude and the transmission probability can be calculated respectively as, 

 

�(�) =
��̅(�)

��̅(�)
                                                                                                                                                                (20) 

 
�(�) = |�(�)|�                                                                                                                                                             (21) 

 
Now, by substituting Eq. (19) in Eq. (13) we obtain, 
 

��̅(�)�� − �� − � (�)
��

� = ��(���)��̅��(�)                                                                                                    (22) 

 

where ∑ (�)�� = ∑
�����

�
�

�����
��

  is the level self-energy [22] 

 
We rearranged the set of linear Eqs. (14-17) in a matrix-form equation, 
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�

�����̅

0
⋮

�(���)���̅

0

�
�                                                           (23) 

 
Accordingly, the transmission probability amplitude is,   
 

�(�) =
��̅

��̅

=
��(���)∆��/∆

�� − �� − ��(���)∆(���)�/∆�− ∑ (�)��

                                                                                      (24) 

 
Then the transmission probability is �(�) = |�(�)|�, which will employed for calculation the thermoelectric 
properties. Where the determinant ∆ is defined as, 
 

∆= �
�

� − �� −��� −���

−��� � − �� 0
−���

0
0

0
0
0

⋱
⋱
0

0 0
0 0
⋱

� − ����

−��(���)

⋮
−�(���)�

� − ��

�
�                                                                                            (25) 

 
And one can obtain the determinant ∆(���)� by substituting the right side of Eq. (23) in the (N-1) the column of 

Eq. (25), making �����̅ = 0, while one can also obtain the determinant ∆�� by substituting the right side of Eq. 
(23) in the first column of Eq. (25),  making �(���)���̅ = 0. 
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The thermoelectric properties of the system calculated 
as follows: If one assumes an effective drop voltage 
∆� and a temperature difference ∆� between the left 
and right leads. Then, in the linear temperature and 
bias regime, the charge current �� and the heat current 
�� through the system are given by [25]: 
 

�� =
2

ℎ
�����∆� −

�

�
��∆��                                  (26) 

 

�� =
2

ℎ
�−���∆� +

1

�
��∆��                                (27) 

 
with ℎ is Planck constant. The transport coefficients 
are computed by using the integrals [25], 
 

��(�, �)= �(−
��

��
)(� − �)��(�)��              (28) 

 
�  is the chemical potential and ��(�) is the            

Fermi distribution function, with ��(�)=

1 (1 + ���⁄
(����)

���
) for the lead �  ( = �, �) and ��  

being the Boltzmann constant, where �� = �� = �.  
 
The most suitable parameter todescribe the electron 
transport throughout nanostructured systemis the 
electrical conductance � = −�� ∆�⁄ , it can be 
obtained by using Eq. (26), which is calculated at zero 
temperature gradient,  
 

� =
2��

ℎ
��                                                                (29) 

 
where 2�� ℎ⁄  is conductance quantum. The 
thermopower � is defined as the voltage drop induced 
by the difference of temperature when the charge 
current �� (Eq.26) vanishes, and it is given by: 
 

� = −
∆�

∆�
= −

1

��

��

��
 .                                            (30) 

 
And the electron thermal conductance ��� = − �� Δ�⁄  
can be obtained by Eq. (27), when the charge current 
�� vanishes,  
 

��� =
2

ℎ�
��� −

��
�

��

�                                               (31) 

 
Finally one can obtain figure of merit by using the 
following formula, 
 

�� =
1

����

��
� − 1

                                                          (32) 

where we have neglected the phonon thermal 
conductance. 
 

3. CALCULATIONS AND DISCUSSION 
 
For semi-infinite atomic chain for the leads, the 
density of electronic states for right lead is given by 
[26], 
 

��(�) =
1

�|��|
�1 − �

� − ���

2��
�

�

                       (33) 

 
where ��� is the position of Fermi energy level at the 
right lead. ��  is related to the energy band width≡
4��  of the right lead. The self-energy ∑ (�)��  is 
written as [22], 
 

� (�) = −�∆��(�)+ Λ��(�)
��

                        (34) 

 
with ∆��(�) is the acceptor level broadening due to 
acceptor level-right lead's levels coupling interaction. 
Λ��(�)is the quantum shift that happens in the 
acceptor level due to the over mentioned coupling 
interactions. With [27], 
 

∆��(�)= �|���|�ρ
�

(�)                                         (35) 

 
and, 

Λ��(�)= �
1

�
�

∆��(�′)

� − �′
��′                                (36) 

 
where � refers to the principal part. 
 
For all our results that presented in Figs. 2-5, the 
energies are given by �, the energy levels of the sites 
are chosen as En=0 and the coupling interaction 
between subsystems are � = � , ��� = �(���)� = � , 

and ��� = 1.3Γ . While the interdot interaction 
between the central quantum dots and side quantum 
dots� = 0.2Γ, 0.6Γ, and Γ. 
 
We calculate the thermoelectric properties assisted 
with antiresonance of a serially coupled T-shape- 
double- quantum dot. Fig. 2 shows electrical 
conductance of this structure, which calculated by Eq. 
(29), where anantiresonance appears at the energy 
level of side quantum dot. This feature appears due to 
the quantum interference effect between a localized 
state on the side quantum dot with the continuum of 
the central quantum dot coupled to the donor and the 
acceptor. Antiresonance increases when interdot 
interaction between the central quantum dot and side 
quantum dot (t) increases, it becomesalso wider. 



 
 
 
 

AL-Badry et al.; JOBARI, 6(4): 239-247, 2015 
 
 

 
244 

 

 
 

Fig. 2. Electrical conductance as a function of 
gate voltage Vgfor (a) two quantum dots, (b) four 

quantum dots, (c) six quantum dots, (d) eight 
quantum dots, and (e) ten quantum dots, with 

En=0, V=VDB=VAB=Γ, t=0.2, 0.6 and Γ, VAR=1.3Γ,  
T=300K 

Fig. 3. The thermopower as a function of gate 
voltage Vgfor (a) two quantum dots, (b) four 
quantum dots, (c) six quantum dots, (d) eight 
quantum dots, and (e) ten quantum dots, with 

En=0, V=VDB=VAB=Γ, t=0.2, 0.6 and Γ, VAR=1.3Γ,  
T=300K 
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Fig. 4. Electron thermal conductance as a 

function of gate voltage Vgfor (a) two quantum 
dots, (b) four quantum dots, (c) six quantum 

dots, (d) eight quantum dots, and (e) ten 
quantum dots, with En=0, V=VDB=VAB=Γ, t=0.2, 

0.6 and Γ, VAR=1.3Γ,T=300K 

Fig. 5. Figure of merit as a function of gate 
voltage Vgfor (a) two quantum dots, (b) four 
quantum dots, (c) six quantum dots, (d) eight 
quantum dots, and (e) ten quantum dots, with 

En=0, V=VDB=VAB=Γ, t=0.2, 0.6 and Γ, 

VAR=1.3Γ,T=300K 
 

In Figs. 2(a) and 2(b), the number of resonances equal 
to the number of quantum dots for all values of �.Also 
this characteristic appears in Figs. 2(c) and 2(d) at 
� = 0.6Γ, Γ, while the number of resonances reduced 
to (� − 2) at � = 0.2Γ. When � = 10 the number of 

resonances decreased to � − 4 at � = 0.2Γ,  as shown 
in Fig. 2(e). The number of resonances relative to the 
number of quantum dots clearly suppressed by 
increasing �  and decreasing � . The number of 
quantum dots insignificantly effect on the magnitude 
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of electrical conductance. In Fig. 2(a), the two 

resonances are located at � and – �, while with � and � 
increasing, the position of intiresonance has no 
changing.  
 
Our results show that the thermopower S calculated 
by Eq. (30), it changes its sign when�� corresponds to 
one of the relevant resonances. The energy levels of 
quantum dots are tuned by gate potential, we set 
�� = −��. When the energy levels of quantum dots is 

below μ (the leads chemical potential), the main 
carriers are holes (i.e. the charge and heat transport 
through the hole channels is predominant) and then 
Sis positive. When the energy level is above μ, the 
main carriers are electrons (i.e. the charge and heat are 
carried by mainly electron channels) and thus Sis 
negative [5]. So one can adjust the gate voltage or 
equivalently energy levels of quantum dots and obtain 
the optimized thermopower. By comparing Fig. 3 
with the results in Fig. 2, we find that in the structure 
of T-shape-double-quantum dot, the antiresonance 
mechanism enhances the thermoelectric effect. And, 
with the increase of quantum dot numbers, the 
thermoelectric effect becomes more apparent. In     
Fig. 3, the thermo power increases when interdot 
interaction(�) increases at antiresonance. As we see 
the thermopower increases when the number of 
quantum dots increases at � = 0.6Γ, Γ, while at  � =
0.2Γ, the thermopower decreases when the number of 
quantum dot increases. 
 
In general, the electron thermal conductance 
calculated by Eq. (31), it is behaves the same as the 
electrical conductanceas shown in Fig. 4. But it is 
lower than electrical conductance, also appear added 
resonance at �� = 0 when interdot tunneling � = 0.2Γ 
for all values of N. After combine these three 
properties we get the thermoelectric efficiency �� , 
which calculated by Eq. (32) (Fig. 5). The values of 
gate voltage at which the figure of merit vanishes 
corresponding to the same values at which S = 0. 
Figure of merit is considerably enhanced in the 
vicinity of the antiresonance position;outside this 
region ZT is significantly suppressed.In the structure 
of T-shape-double-quantum dot (Fig. 5(a)), we obtain 
the result that ZT <1 for all values of �. Therefore, 
when the number of quantum dots increases, the 
antiresonance mechanism can effectively cause the 
enhancement of the figure of merit at � = 0.6Γ  as 
shown in Figs. 5(b)-5(d).Except at N=10, ZT enhances 
at = Γ , see Fig. 5(e). 
 

4. CONCLUSION 
 
In summary, we have investigated thermoelectric 
properties, like electrical conductance, thermo power, 

electronic thermal conductance, and figure of merit in 
a system of serially coupled T-shape-double-quantum 
dot. 
 
We have shownthat the antiresonance mechanism can 
significantly enhance thethermoelectric effects, 
especially for specific interdot interaction values. 
Figure of merit is considerably enhanced in the 
vicinity of the antiresonance position, outside this 
region ZT is significantly suppressed. The 
thermoelectric efficiency can be additionally 
enhanced by increasing the number of quantum dots. 
Thus, the thermoelectric efficiency can be controlled 
by adjusting gate voltage.   
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