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Abstract 

In this article we present theoretical treatment for electron transport through one scattering 

region attached to donor and left lead in the left side, while in the right side attached to acceptor 

and right lead. Our treatment is based on the time-dependent  Anderson – Newns Hamiltonian. 

The equations of motion are derived for all subsystems then the stationary state is considered to 

obtain analytical expression for the transmission probability as a function of system energies. 

The scattering region consists of one, two or three quantum dots. The subsystems eigen values, 

the coupling interaction between them as well as the leads band width all are taken into 

consideration and highlighted. 
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Introduction 

 

Transport through nano-scale devices 

based on single molecules has attracted a lot 

of interest over the last years (Maiti 2010), 

(Finch et al. 2009), (Aradhya et al. 2012) 

and (He et al. 2009). The basic idea of such 

transport devices is that initially two 

metallic electrodes are separated by a gap, 

prohibiting any transport of electrons. 

However, already a single molecule trapped 

within this gap can serve as bridge and 

thereby allow for a small current of 

tunneling electrons. One of the most 

interesting aspects of such single-molecule 

devices is their size. The gap can nowadays 

be fabricated and controlled on the 

nanometer-scale. The small size of the 

device makes single-molecule transport 

devices particularly interesting for 

information technology, where the demand 

for device miniaturizing is growing fast. 

Obviously, at such small scales, quantum 

mechanical effects become crucial 

(Reckerman 2010). 

In this paper, we study left lead-donor-

scattering region-accepter-right lead system 

(see fig. (1,a)). Where, the scattering region 

(i.e. the bridge) consists of several 

nanostructures. These may be one, two or 

three quantum dots.  

In our work, we will present our theoretical 

treatment to formulate general expression 

for the electron transport throughout one 

scattering region to study and calculate the 

electronic properties for the considered 

system in our study.  So, all the system 

eigenvalues and coupling interactions are 

taken into consideration to give obvious 

view for the system dynamics.
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1. Theory 

In this section, general formula for the 

transmission probability for one scattering 

region will be derived for the system shown 

in fig.(1). The different indices L, D, B, A 

and R denote left lead, donor, bridge, 

acceptor and right lead respectively (see 

fig(1,b)).This energy diagram can be 

described by using time-dependent and spin 

less  Anderson – Newns Hamiltonian 

(Newns 1969),   which neglects Coulomb 

interactions. This Hamiltonian is given by 
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Where,
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 and the )(tC j ( )(tC j

 ) denotes annihilation (creation) operators. The 

index jk  being a set of quantum numbers, with j=L, B, R. The equation of motion for )(tC j can 

be obtained by using (Ballentine 2000), 
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For stationary state we define )(tC j
 by the following: 
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where E denotes the system eigenvalues, then accordingly, 0)( EC j

 .  

In order to get logic and simple formula for the transmission probability amplitude, we assume 

the following energy separation procedure (Stamfi 1994):  
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where α=D,A and β=D,A,B ,then  we get, 
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Then the transmission probability amplitude and transmission probability (Ihn 2010) can be 

calculated respectively as:    
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By using the following operator equation, 
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Where P(…) denotes the principal part of (…). 
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Accordingly, the functions ΓB(E) and ΓR(E) will take the following formulas, 
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Where ρℓ(E) represents the density of electronic states for the nanostructure which is given by 

(Amos 1989) 
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Then we can write the level self-energy (Galperin 2004),  
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ΔAB (E) is the acceptor level broadening due to acceptor level-bridge level coupling interaction, 

while ΔAR (E) is the acceptor level broadening due to acceptor level-right lead's levels coupling 

interaction. ΛAB(E) and ΛAR(E) are the quantum shift that happen in the acceptor level due to 

the over mentioned coupling interactions. With (Newns 1983),  
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Also, we can define the self-energy V
AB

V
BD

ΓB(E) ,which refers to the indirect coupling 

interaction between the donor and the acceptor levels throughout the bridge, as  
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Notably, ΔABD (E) determines the interference energy and ΛAB (E) is its corresponding quantum 

shift.        
  

 Now we can write the transmission probability amplitude as  
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Note that, the acceptor and donor levels are broadened and thus they will have local density of 

states which take the following Gaussian forms respectively (Kjollerstrom 1966), (Anderson 

1961) and (Al-Muhk 1997), 
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where ΔDL (E) is the donor level broadening due to donor level-left lead's levels coupling 

interaction and ΛDL(E) is the corresponding quantum shift. 

2. Model Parameterization 

(3-1) One Quantum Dot 

 The first case is the case when the bridge's system is considered as one quantum dot with 

effective energy level EB, with local density of states given by (Havison 2005), 
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Accordingly, the third term in eq. (1) will be EBnB(t) while the sixth and seventh terms are 

written respectively as, 
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The self-energy AR
E)(  is calculated by using eq.( 17), for this purpose  the density of states 

formula used for the right lead is given by (Sulston 1988),  
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EFR  is the position of Fermi energy level on the right lead. βR is related to the occupied band 

width of the right leads which is equal to 2 βR. 

 Accordingly, the broadening and the quantum shift functions read as, 
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As a model parameterization, the 

transmission probability is calculated as a 

function of energy for different values of the 

coupling interactions as well as the leads 

band width. These calculations are shown in 

the figures (2-4). Fig.(2) shows our results 

for the cases V
AR

=-1.5eV and βR =-1.5eV in 

(a) and  V
AR

=-3eV and βR =-3 eV in (b) for 

different quantum dot's energy level 

positions (relative to leads Fermi levels 

EFR=0 and EFL=0). It is obvious that T(E)=1 

at E=EB. It is also obvious that there is a 

pronounced broadening in T(E) curve as EB 

lies more below the leads Fermi levels. In 

Fig. (3), T(E) is calculated for different 

values of βR with V
AR

=-3.0eV in (a), while 

in (b) T(E) is calculated for different values 

of V
AR

 with βR =-3.0eV. Fig. (3) shows that 

the broadening of T(E) increases as the band 

width increases and as coupling interaction 

between the acceptor and the right lead 

decreases. fig. (4) shows that the broadening 

of T(E) increases as the coupling 

interactions of the bridge with the donor and 

acceptor increase. It is obvious that the 

effect of these coupling interactions is 

dominant.  

The solid lines In Fig. 4 represent the results 

in the limit of weak-coupling, while, the 

dash lines denote the results in the strong-

coupling limit. In the weak coupling limit, 

the transmission shows very sharp resonant 

peak for bridge energy EB=-1. At this 

resonance the transmission probability T(E) 

achieves the value 1. 

With the increase of the dot-donor VDB and 

dot-acceptor VAB coupling strengths, the 

width of this resonance get enhanced 

substantially, as illustrated by the dash 

curves in Fig. 4. This is due to the 

substantial broadening of the quantized 

energy levels in the limit of strong-coupling.  
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Thus for the strong-coupling limit, the 

electron conducts through the dots for the 

wide range of energies, while, a fine tuning 

in the energy scale is necessary to get the 

electron conduction through these systems 

in the limit of weak coupling. 

Therefore, it can be predicted that the dot-

donor and dot-acceptor coupling strength 

has a significant role in the determination of 

the electron conduction through the bridge 

systems. This feature provides a key 

information in the study of molecular 

transport phenomena. 

 

 

 

 

Figure(2): the transmission probability as function of the system energy with V
DB

=V
AB

=-0.1eV.  

Figure(3): the transmission probability as function of the system energy with EB=-1eV,  

V
DB

=V
AB

=-0.3eV. 
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(3-2) Two Quantum Dots 

The second case is the case when the bridge's system is considered as two quantum dots with 

two effective energy levels EB1 and EB2.The local density of states on each quantum dot is 

calculated by using the following formula, 
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So
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)()( 21   , where V

BB
 is the coupling interaction between the two quantum 

dots. The two quantum dots are connected serially and EB1 = EB2=EB. 

  If the interaction between the two quantum dots is switched on, then the interaction will 

lifted the degeneracy and the two quantum dot levels will be  

       -                                                                                                             (30a) 

                                                                                                                   (30b) 

which corresponds to the case of two levels interaction.    

Notably, the two quantum dots are connected serially, so VDB2=0 and VAB1=0. This case is also 

parameterized. The calculations are performed for VDB1=VAB2=-0.1eV, V
BB

=-0.1,-0.2 and -

0.3eV with VAR=-3eV, βR=-3eV and EB=-1, 0, 1eV (see figs.(5- 7)). 

 

 

 

Figure(4): the transmission probability as function of the system energy with EB=-1eV. 
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Figure (5): the transmission probability as function of the system energy with 

 V
DB

=V
AB

=V
BB

=-0.1eV, V
AR

=-3eV, βR=-3eV. 

Figure (6): the transmission probability as function of the system energy with 

V
DB

=V
AB

=-0.1eV, V
BB

=-0.2eV, V
AR

=-3eV,βR=-3eV. 

 

Figure (7): the transmission probability as function of the system energy with 

V
DB

=V
AB

=-0.1eV, V
BB

=-0.3eV,V
AR

=-3eV, βR=-3eV. 

 



Basrah Journal of Science (A)                                                                                             Vol.32(1),71-85, 2014 

81 

 

Interesting features are noticed:- 

1- The energy difference between the energy levels positions is equal to  |   | for all 

cases. 

2- As the coupling interactions VDB1 and VAB2 increase the transmission probability curves 

are broadened more. 

 

(3-3) Three Quantum Dots 

The third case is the case when the bridge's system is considered as three quantum dots with 

three effective energy levels EB1, EB2 and EB3 .The local density of states on each quantum dot 

is calculated by using eq.(29), so 
BBBB
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 The bridge energy levels positions must be obtained following the tight binding model 

formula (Patterson 2007), 
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Here V
BB

 is the coupling interaction between any two nearest neighbors quantum dots and N=3.  

In this case the interaction will partially lifted the degeneracy and the three quantum dots levels 

will be, 

       √  
                                                                                                   (32a) 

                                                                                                                        (32b) 

       √  
                                                                                                   (32c) 

This case is also parameterized. The calculations are performed for V
DB1

=V
AB3

=-0.1eV, V 
BB

=-

0.1, -0.2 and -0.3eV with V
AR

=-3eV, βR=-3eV and EB=-1, 0, 1eV (see figs.(8-10)). Interesting 

features are noticed:- 

1- The energy difference between any two adjacent energy levels positions is equal to 

√ |   | for all cases. 

2- As the coupling interaction V
DB1

, V
AB3

 increases the transmission probability curves are 

broadened more.  
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4. Conclusions 

From our results we can predict that the 

electron transport is significantly influenced 

by (a) the bridge-donor and bridge-acceptor 

coupling strength, (b) the acceptor-right lead 

Figure (8): the transmission probability as function of the system energy with 

VDB=VAB=V
BB

=-0.1eV, VAR=-3eV,βR=-3eV. 

Figure (9): the transmission probability as function of the system energy with 

VDB=VAB=-0.1eV, V
BB

=-0.2eV, VAR=-3eV, βR=-3eV. 

Figure (10): the transmission probability as function of the system energy with 

VDB=VAB=-0.1eV,V
BB

=-0.3eV, VAR=-3eV, βR=-3eV. 
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coupling strength and (c) the band width of 

leads.     

The transmission probability shows sharp 

resonant peak for the weak-coupling limit 

(solid curves in Fig. (4)), while, they get 

broadened in the limit of strong-coupling 

(dash curves of Fig. (4)). Such increment of 

the resonant width is due to the broadening 

of the quantized energy levels of the donor 

and the acceptor. All these resonant peaks 

are associated with the energy eigenvalues 

of the bridge, and hence, we can predict that 

the transmission probability spectrum 

manifests itself the electronic structure of 

the bridge. 
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لكترون خلال جسر من النقاط الكميةمعالجة نظرية لنقل الأ  

 

 جنان مجيد المخ و شاكر أبراهيم عيسى ولافي فرج البدري 

 

البصرة / العراققسم الفيزياء / كلية التربية للعلوم الصرفه / جامعة البصرة /   

 

Albadrylafy@yahoo.com 

 الملخص

في هذا البحث تم تقديم معالجة لنظرية لنقل الألكترون خلال منطقة أستطارة واحدة رُبطت بواهب وقطب أيسر في الجانب 

نيونز المعتمد على -بنيت معالجتنا على هاملتونين أندرسونالأيسر بينما في الجانب الأيمن ربطت بمستقبل وقطب أيمن. 

الزمن. أشُتقت معادلات الحركة لكل أجزاء النظام ثم تم إعتبار الحالة المستقرة لإيجاد صيغة تحليلية لأحتمالية النفاذية كدالة 

ذاتية لأجزاء النظام وتفاعل الأقتران لطاقات النظام. تتكون منطقة الأستطارة من واحد أو أثنان أو ثلاثة نقاط كمية. القيم ال

 بينهما بالإضافة إلى عرض حزمة الأقطاب ثم أخذها جميعاً بنظر الأعتبار.
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