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Abstract

In this article we present theoretical treatment for electron transport through one scattering
region attached to donor and left lead in the left side, while in the right side attached to acceptor
and right lead. Our treatment is based on the time-dependent Anderson — Newns Hamiltonian.
The equations of motion are derived for all subsystems then the stationary state is considered to
obtain analytical expression for the transmission probability as a function of system energies.
The scattering region consists of one, two or three quantum dots. The subsystems eigen values,
the coupling interaction between them as well as the leads band width all are taken into

consideration and highlighted.
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Introduction

Transport through nano-scale devices
based on single molecules has attracted a lot
of interest over the last years (Maiti 2010),
(Finch et al. 2009), (Aradhya et al. 2012)
and (He et al. 2009). The basic idea of such
transport devices is that initially two
metallic electrodes are separated by a gap,
prohibiting any transport of electrons.
However, already a single molecule trapped
within this gap can serve as bridge and
thereby allow for a small current of
tunneling electrons. One of the most
interesting aspects of such single-molecule
devices is their size. The gap can nowadays
the

be fabricated and controlled on

nanometer-scale. The small size of the
device makes single-molecule transport
devices for

particularly interesting

information technology, where the demand
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for device miniaturizing is growing fast.
Obviously, at such small scales, quantum
mechanical  effects  become crucial
(Reckerman 2010).

In this paper, we study left lead-donor-
scattering region-accepter-right lead system
(see fig. (1,a)). Where, the scattering region
the Dbridge)

nanostructures. These may be one, two or

(i.e. consists of several
three quantum dots.

In our work, we will present our theoretical
treatment to formulate general expression
for the electron transport throughout one
scattering region to study and calculate the
electronic properties for the considered
system in our study. So, all the system
eigenvalues and coupling interactions are
taken into consideration to give obvious
view for the

system  dynamics.
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Figure (1):(a) An illustration for left lead-donor-scattering region-accepter-right
lead system. (b)The corresponding energy diagram, the energy levels and
coupling interactions between the nearest neighbor parts.
1. Theory
In this section, general formula for the fig(1,b)).This energy diagram can be
transmission probability for one scattering described by using time-dependent and spin
region will be derived for the system shown less Anderson — Newns Hamiltonian
in fig.(1). The different indices L, D, B, A (Newns 1969), which neglects Coulomb
and R denote left lead, donor, bridge, interactions. This Hamiltonian is given by

acceptor and right lead respectively (see

H (t) = Epnp (t) + En,a () + Z EkB Ny, t) + Z EkL Ny, ) "'Z EkR Ny, ®
+> (V5 Co()C, () +H.C) + D (V, Ci(H)C, () +H.C)
+> (Vp Co(1)C, () +H.C) +> (V, CAt)C, () +H.C.) (1)

Where, n;(t)=C; (t)C,(t)and the C,(t) (C; (t)) denotes annihilation (creation) operators. The
index k; being a set of quantum numbers, with j=L, B, R. The equation of motion for C,(t) can
be obtained by using (Ballentine 2000),

CdH ()

C,(t) =i i (2)

to get,

73



J. M. AL-Mukh,S. 1. Easaand L. F. Al-Badry Theoretical Treatment...

CD = _iEDCD t- iz‘,kaB CkB - iZVDkLCkL ® (3)
kg k.

Cut) =—IE,Co()) =YV, C, ()-iDV, C, () (4)

C,, () =—iE,_C, )=V, cCp(t) =iV, ,C,(1) (5)

C, (t)=-iE, C, (t)-iV, ,.Co (1) (6)

C,, (t)=-iE, C,_ (t)-iV, ,C,(t) (7)

For stationary state we define C,(t) by the following:
C,(t)=C,(E)e ™ (8)
where E denotes the system eigenvalues, then accordingly, éj(E) =0.

In order to get logic and simple formula for the transmission probability amplitude, we assume
the following energy separation procedure (Stamfi 1994):

Vige =ViV* Vi =n VP Vi, =1, V™ ; C, (E)=v, C, (9)

kgar

where 0=D,A and f=D,A,B ,then we get,
c 1

AT EE, {‘/ABFB (E)V BDCD +V BAGA] + N AR‘ZFR (E)CA} (10)

Then the transmission probability amplitude and transmission probability (Ihn 2010) can be

calculated respectively as:

t(E) = C_:A(E) (11)
Cp (E)
T(E) = t(E) (12)
Where
a
Vi
[(E)=) "~ /=BR 13
wgltd =
By using the following operator equation,
: 1 : 1
I|myéom——lﬂ5(E—En)+PE_En (14)

Where P(...) denotes the principal part of (...).
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Accordingly, the functions I'g(E) and I'r(E) will take the following formulas,

rg(E)z—inpf(E)wj%dE'

/=B,R (15)

Where p((E) represents the density of electronic states for the nanostructure which is given by
(Amos 1989)

p,(E)= Z‘Vk, ‘25(E -E)

(16)
Then we can write the level self-energy (Galperin 2004),
>, (B) =V T (E) (17)
=—iA,,(E)+ A, (E) ¢=B,R

Aag (E) is the acceptor level broadening due to acceptor level-bridge level coupling interaction,
while Aar (E) is the acceptor level broadening due to acceptor level-right lead's levels coupling

interaction. Aag(E) and Aar(E) are the quantum shift that happen in the acceptor level due to
the over mentioned coupling interactions. With (Newns 1983),

AA((E):”NA/‘ZIDK(E) l

and

-B,R (18)

A, (E)= Pij%('?de (19)

Also, we can define the self-energy V*°V®°I'z(E) ,which refers to the indirect coupling

interaction between the donor and the acceptor levels throughout the bridge, as
D e (E) 2V VL (E)

20
=_iAABD(E)+AABD(E) ( )
With,
Apgo(E) =2V ' BDPB(E) (21)
_ l Ao (E") =/
A pep(E) = Pﬁj—E_E, dE (22)

Notably, Aagp (E) determines the interference energy and Aag (E) is its corresponding quantum
shift.

Now we can write the transmission probability amplitude as
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- ZABD(E) 23
HE= E_EA_ZAB(E)_ZAR(E) ( )

Note that, the acceptor and donor levels are broadened and thus they will have local density of

states which take the following Gaussian forms respectively (Kjollerstrom 1966), (Anderson
1961) and (Al-Muhk 1997),

_1 A (E)
Pu(E)= T (E-E, _AAR(E))2 +A2AR(E) (243)

_1 Ay (E)
#o(E)= 7 (E-Ep _ADL(E))2 +A2DL(E) (24b)

where Ap, (E) is the donor level broadening due to donor level-left lead's levels coupling
interaction and Ap,(E) is the corresponding quantum shift.

2. Model Parameterization

(3-1) One Quantum Dot

The first case is the case when the bridge's system is considered as one quantum dot with
effective energy level Eg, with local density of states given by (Havison 2005),

Pe(E) =6(E, —E;) (25)

Accordingly, the third term in eq. (1) will be Egng(t) while the sixth and seventh terms are

written respectively as,

VpsCh(HCr(H)+h.c
VasCy(OCp()+h.c
Then by using the definitions in egs.( 13-15) with,
Y
2e(E)= ltl_—E (26a)
and,
2oea(B) = VE _VEB (26b)

The self-energy > _(E) is calculated by using eq.( 17), for this purpose the density of states

formula used for the right lead is given by (Sulston 1988),

1 E-E_ Y
(E)=—— 1| E=Em 27
PO (zﬂR ] 27)
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Err is the position of Fermi energy level on the right lead. Bg is related to the occupied band

width of the right leads which is equal to 2 Bg.

Accordingly, the broadening and the quantum shift functions read as,

[VAR|2 \/ (E _ EFR ]2
A (E) = 1-
AR( ) |ﬁR| 2|ﬂR|

[VAR|2
E)=——(E-E
A (E) 27r|ﬂR|2( Fr)

As a model the

transmission probability is calculated as a

parameterization,

function of energy for different values of the
coupling interactions as well as the leads
band width. These calculations are shown in
the figures (2-4). Fig.(2) shows our results
for the cases V*"=-1.5eV and Bg =-1.5eV in
(a) and V*R=-3eV and Br =-3 eV in (b) for
different quantum dot's energy level
positions (relative to leads Fermi levels
Err=0 and Er_ =0). It is obvious that T(E)=1
at E=Eg. It is also obvious that there is a
pronounced broadening in T(E) curve as Eg
lies more below the leads Fermi levels. In
Fig. (3), T(E) is calculated for different
values of Bg with VA?=-3.0eV in (a), while
in (b) T(E) is calculated for different values
of VAR with g =-3.0eV. Fig. (3) shows that
the broadening of T(E) increases as the band
width increases and as coupling interaction
between the acceptor and the right lead

decreases. fig. (4) shows that the broadening
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(28a)

(28b)

of T(E) increases as the

interactions of the bridge with the donor and

coupling

acceptor increase. It is obvious that the
effect of these coupling interactions is
dominant.

The solid lines In Fig. 4 represent the results
in the limit of weak-coupling, while, the
dash lines denote the results in the strong-
coupling limit. In the weak coupling limit,
the transmission shows very sharp resonant
peak for bridge energy Eg=-1. At this
resonance the transmission probability T(E)
achieves the value 1.

With the increase of the dot-donor Vpg and
dot-acceptor Vag coupling strengths, the
width of this
substantially, as illustrated by the dash

resonance get enhanced

curves in Fig. 4. This is due to the
substantial broadening of the quantized

energy levels in the limit of strong-coupling.
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Figure(2): the transmission probability as function of the system energy with V°®=V*®=-0.1eV.
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Figure(3): the transmission probability as function of the system energy with Eg=-1eV,

VPB=\AB=_ 3eV.

Thus for the strong-coupling limit, the
electron conducts through the dots for the
wide range of energies, while, a fine tuning
in the energy scale is necessary to get the
electron conduction through these systems

in the limit of weak coupling.
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Therefore, it can be predicted that the dot-
donor and dot-acceptor coupling strength
has a significant role in the determination of
the electron conduction through the bridge
systems. This feature provides a key
information in the study of molecular

transport phenomena.
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Figure(4): the transmission probability as function of the system energy with Eg=-1eV.

(3-2) Two Quantum Dots

The second case is the case when the bridge's system is considered as two quantum dots with

two effective energy levels Eg; and Eg,.The local density of states on each quantum dot is
calculated by using the following formula,

pB(Ej): iz
‘4VBB7zsin( )‘
N+1

(29)

So pB(E1)=pB(E2)=ﬁ , where V®® is the coupling interaction between the two quantum

dots. The two quantum dots are connected serially and Eg; = Eg,=Eg.

If the interaction between the two quantum dots is switched on, then the interaction will
lifted the degeneracy and the two quantum dot levels will be

EB] :EB'VBB
EBZ :EB+VBB

(30a)

(30Db)
which corresponds to the case of two levels interaction.

Notably, the two quantum dots are connected serially, so Vpg,=0 and V ag1=0. This case is also
parameterized. The calculations are performed for Vpg;=Vag,=-0.1eV, VB8=-0.1,-0.2 and -
0.3eV with Vag=-3eV, Pr=-3eV and Eg=-1, 0, 1eV (see figs.(5- 7)).
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Fi%ure (5): the transmission probability as function of the system energy with
VPB=ABZVBB=_( 10V, VAR=-3eV, Br=-3eV.
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Figure (6): the transmission probability as function of the system energy with
VPB=vAB=_0.1eV, VBB=-0.2eV, V R=-3¢V Br=-3eV.
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Figure (7): the transmission probability as function of the system energy with

VPB=v"B=_0.1eV, V®B=-0.3eV,V*R=-3eV, Br=-3eV.
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Interesting features are noticed:-

1- The energy difference between the energy levels positions is equal to 2|V 58| for all
cases.
2- As the coupling interactions Vpg; and Vag; increase the transmission probability curves

are broadened more.

(3-3) Three Quantum Dots
The third case is the case when the bridge's system is considered as three quantum dots with

three effective energy levels Eg;, Eg, and Eg; .The local density of states on each quantum dot

32
7N BB

3

and p,(E,) = EVER

is calculated by using €q.(29), so pg(E,) = o5 (E;) =

The bridge energy levels positions must be obtained following the tight binding model

formula (Patterson 2007),

E, —E +szBco{ J”j =123 (31)
N +1

Here V™8 is the coupling interaction between any two nearest neighbors quantum dots and N=3.

In this case the interaction will partially lifted the degeneracy and the three quantum dots levels

will be,

Ep, = Eg —2VBB (32a)
Eg, = Eg (32b)
Egs = Ep +2VB8 (32c)

This case is also parameterized. The calculations are performed for V°2!=V*%*=-0.1eV, V ®5=-
0.1, -0.2 and -0.3eV with V*?=-3eV, Br=-3eV and Eg=-1, 0, 1eV (see figs.(8-10)). Interesting
features are noticed:-

1- The energy difference between any two adjacent energy levels positions is equal to

V2|V BB| for all cases.
2- As the coupling interaction VP!, V5% increases the transmission probability curves are

broadened more.
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Figure (8): the transmission probability as function of the system energy with
Voe=Vas=V°P=-0.1eV, Var=-3cV,Br=-3eV.
4 (a) Ep=leV N () Ez=0eV Y (c)  Eg=1leV A
g g g
E(eV) E(eV) E(eV)

N A A J
Figure (9): the transmission probability as function of the system energy with
Vpe=Vas=-0.1eV, V®8=-0.2eV, Var=-3cV, fr=-3eV.
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Figure (10): the transmission probability as function of the system energy with
Vpe=Vas=-0.1eV,V*®=-0.3eV, Var=-3eV, Pr=-3eV.

4. Conclusions

by (a) the bridge-donor and bridge-acceptor

coupling strength, (b) the acceptor-right lead

From our results we can predict that the

electron transport is significantly influenced
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coupling strength and (c) the band width of
leads.

The transmission probability shows sharp
resonant peak for the weak-coupling limit
(solid curves in Fig. (4)), while, they get
broadened in the limit of strong-coupling
(dash curves of Fig. (4)). Such increment of
the resonant width is due to the broadening
of the quantized energy levels of the donor
and the acceptor. All these resonant peaks
are associated with the energy eigenvalues
of the bridge, and hence, we can predict that
the transmission probability  spectrum
manifests itself the electronic structure of

the bridge.
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