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The intuitionistic fuzzification in 𝜌−algebras about the concepts of ideals and subalgebras given with several related charac-
terizations is considered. Some new concepts like intuitionistic fuzzy 𝜌−ideal (𝐼𝐹𝜌𝑖), intuitionistic fuzzy 𝜌−subalgebra (𝐼𝐹𝜌𝑠),
𝜌−homomorphism, and intuitionistic fuzzy 𝜌−ideal (𝐼𝐹𝜌𝑖) are introduced and some of their descriptions are given in this work.
Further, we show some applications on the family of all intuitionistic fuzzy 𝜌−subalgebras 𝐼𝐹𝜌𝑆(R) in 𝜌−algebra like the binary
relations ≈

𝜇
, ≈
]
and Γ𝑟 on 𝐼𝐹𝜌𝑆(R). Also, their equivalence classes are given and studied.

1. Introduction

The fuzzy set (FS) as suggested by Zadeh [1] in 1965 is a
regulation to vagueness and encounter uncertainty. A FS
maps each element of the universe of discourse to the interval
[0, 1]. After the introduction of fuzzy sets theory by him,
manymathematicians were conducted on the generalizations
of the this concept and studied in the groups, algebras,
and soft spaces (see [2–5]). By including a fuzzy set the
degree of nonmembership, Atanassov [6] in 1986 suggested
the intuitionistic fuzzy set (IFS), which seems more precise
for provides opportunities and uncertainty quantification to
accuratelymodel a problem based on existing knowledge and
monitoring. Also, this notion is discussed in different fields
(see [7–11])

𝐵𝐶𝐾−algebra, class of algebra of logic, was investigated by
Imai and Iseki [12]. After that, the notion of 𝑑−algebras was
investigated by Neggers and Kim [13]. In 2017, the concepts of
𝜌−algebra, 𝜌−ideal, 𝜌−ideal, 𝜌−subalgebra, and permutation
topological 𝜌−algebra were first proposed by Mahmood and
Abud Alradha [14]. Next, they showed the notion of the soft
𝜌−algebra and soft edge 𝜌−algebra [15].

In the present work, the notions of intuitionistic fuzzy
𝜌−ideal (𝐼𝐹𝜌𝑖), intuitionistic fuzzy 𝜌−subalgebra (𝐼𝐹𝜌𝑠),

𝜌−homomorphism, and intuitionistic fuzzy 𝜌−ideal (𝐼𝐹𝜌𝑖)
are introduced. Further, we show some applications on
the family of all intuitionistic fuzzy 𝜌−subalgebras 𝐼𝐹𝜌𝑆(R)
in 𝜌−algebra like the binary relations ≈

𝜇
, ≈

]
and Γ𝑟 on

𝐼𝐹𝜌𝑆(R). Also, their equivalence classes are given and stud-
ied.

2. Preliminaries and Notations

We will recall basic definitions and results to obtain proper-
ties developed in this work.

Definition 1 (see [16]). An intuitionistic fuzzy set 𝛼 (IFS,
in short) over the universe R is defined by 𝛼 = {≺
𝑎, 𝜇𝛼(𝑎), V𝛼(𝑎) ≻| 𝑎 ∈ R}, where 𝜇𝛼(𝑎): R 󳨀→ [0; 1],
V𝛼(𝑎): R 󳨀→ [0; 1] with 0 ≤ 𝜇𝛼(𝑎) + V𝛼(𝑎) ≤ 1, ∀𝑎 ∈ R.
𝜇𝛼(𝑎) and V𝛼(𝑎) are real numbers and their values represent
the degree of membership and nonmembership of 𝑎 to 𝛼,
respectively.

Definition 2 (see [6]). The IF whole and empty sets of R are
defined by 1 = {≺ 𝑎, (1, 0) ≻| 𝑎 ∈ R} and 0 = {≺ 𝑎, (0, 1) ≻|
𝑎 ∈ R}, respectively.
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2.1. Basic Relations and Operations on Intuitionistic Fuzzy Sets
[7]. Assume 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), V𝛼(𝑎)) ≻| 𝑎 ∈ R} and 𝛽 = {≺
𝑎, (𝜇𝛽(𝑎), V𝛽(𝑎) ) ≻| 𝑎 ∈ R} are two IF sets ofR. We deduced
the following relations:

(1) [inclusion] 𝛼 ⊆ 𝛽 iff 𝜇𝛼(𝑎) ≤ 𝜇𝛽(𝑎) and V𝛼(𝑎) ≥ V𝛽(𝑎),
∀𝑎 ∈ R,

(2) [equality] 𝛼 = 𝛽 iff 𝛼 ⊆ 𝛽 and 𝛽 ⊆ 𝛼,
(3) [intersection] 𝛼∩̃𝛽 = {(𝑎,min{𝜇𝛼(𝑎), 𝜇𝛽(𝑎)},

max{V𝛼(𝑎), V𝛽(𝑎)}) : 𝑎 ∈ R},
(4) [union] 𝛼∪̃𝛽 = {(𝑎,max{𝜇𝛼(𝑎), 𝜇𝛽(𝑎)}, min{V𝛼(𝑎),

V𝛽(𝑎)}) : 𝑎 ∈ R},
(5) [complement] 𝛼𝑐 = {(𝑎, V𝛼(𝑎), 𝜇𝛼(𝑎)), 𝑎 ∈ R}.

Definition 3 (see [14]). We say (R, ∙, 0) is 𝜌−algebra if (∙) is a
binary operation onR with a constant 0 ∈ R and such that

(1) 𝑎 ∙ 𝑎 = 0,
(2) 0 ∙ 𝑎 = 0,
(3) 𝑎 ∙ 𝑏 = 0 = 𝑏 ∙ 𝑎 imply that 𝑎 = 𝑏,
(4) For all 𝑎 ̸= 𝑏 ∈ R − {0} imply that 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 ̸= 0.

Definition 4 (see [14]). Assume (R, ∙, 0) is a 𝜌−algebra and
𝜙 ̸= K ⊆ R. We say 𝐾 is a 𝜌−subalgebra of R if 𝑎 ∙ 𝑏 ∈ 𝐾,
∀𝑎, 𝑏 ∈ 𝐾.

Definition 5 (see [14]). Assume (R, ∙, 0) is 𝜌−algebra and 𝜙 ̸=
𝐾 ⊆ R. We say 𝐾 is 𝜌−ideal ofR if

(1) 𝑎, 𝑏 ∈ 𝐾 imply 𝑎 ∙ 𝑏 ∈ 𝐾,
(2) 𝑎 ∙ 𝑏 ∈ 𝐾 and 𝑏 ∈ 𝐾 imply 𝑎 ∈ 𝐾, ∀𝑎, 𝑏 ∈ R.

Definition 6 (see [14]). Assume (R, ∙, 0) is a 𝜌−algebra and𝐾
subset ofR. We say 𝐾 is a 𝜌−ideal ofR if

(1) 0 ∈ 𝐾,
(2) 𝑎 ∈ 𝐾 and 𝑏 ∈ R 󳨀→ 𝑎 ∙ 𝑏 ∈ 𝐾, ∀𝑎, 𝑏 ∈ R.

Definition 7 (see [11]). Assume that 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎),
V𝛼(𝑎)) ≻| 𝑎 ∈ R} is an IFS in R and 𝑟 ∈ [0, 1]. The set
𝑊(𝜇𝛼, 𝑟) = {𝑎 ∈ R | 𝜇𝛼(𝑎) ≥ 𝑟} (resp., 𝐿(]𝛼, 𝑟) = {𝑎 ∈ R |
]𝛼(𝑎) ≤ 𝑟}) is said to be 𝜇−level 𝑟−cut (resp., ]−level 𝑟−cut) of
𝛼.

3. Intuitionistic Fuzzy
𝜌−Subalgebras in 𝜌−Algebras

In this section, we introduce some new concepts, such as
(𝐼𝐹𝜌𝑠), (𝐼𝐹𝜌𝑖), (𝐼𝐹𝜌𝑖), and 𝜌−homomorphism which are
introduced and discussed. Further, some binary relations ≈

𝜇
,

≈
]
and Γ𝑟 on 𝐼𝐹𝜌𝑆(R) are given, and some basic properties are

shown.

Definition 8. Assume (R, ∙, 0) is a 𝜌−algebra and 𝛼 = {≺
𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is IFS of R. We say 𝛼 is an
(𝐼𝐹𝜌𝑠) of R if 𝜇𝛼(𝑎 ∙ 𝑏) ≥ min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)} and ]𝛼(𝑎 ∙ 𝑏) ≤
max{]𝛼(𝑎), ]𝛼(𝑏)}, ∀𝑎, 𝑏 ∈ R.

Table 1

∗ 0 𝜔 𝜕 ℓ
0 0 0 0 0
𝜔 𝜔 0 𝜕 𝜕
𝜕 𝜔 𝜕 0 𝜔
ℓ ℓ 𝜕 𝜔 0

Example 9. LetR = {0, 𝜔, 𝜕, ℓ} be 𝜌−algebra with Table 1.
Then, 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} = {(0, 0.9,

0.1), (𝜔, 0.4, 0.3), (𝜕, 0.7, 0.3), (ℓ, 0.4, 0.2)} is an (𝐼𝐹𝜌𝑠) ofR.

Definition 10. Assume (R, ∙, 0) is 𝜌−algebra and 𝛼 = {≺
𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is IFS of R. We say 𝛼 is (𝐼𝐹𝜌𝑖)
ofR if

(1) 𝜇𝛼(𝑎 ∙ 𝑏) ≥ min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)} and ]𝛼(𝑎 ∙ 𝑏) ≤
max{]𝛼(𝑎), ]𝛼(𝑏)},

(2) 𝜇𝛼(𝑎) ≥ min{𝜇𝛼(𝑎 ∙ 𝑏), 𝜇𝛼(𝑏)} and ]𝛼(𝑎) ≤ max{]𝛼(𝑎 ∙
𝑏), ]𝛼(𝑏)}, ∀𝑎, 𝑏 ∈ R.

Example 11. Let (R, ∙, 0) be 𝜌−algebra in Example 9 and let
𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} = {(0, 0.8, 0.2),
(𝜔, 0.3, 0.4), (𝜕, 0.2, 0.7), (ℓ, 0.4, 0.3)} be IFS of R. Then, 𝛼 is
(𝐼𝐹𝜌𝑖) ofR.

Definition 12. Assume (R, ∙, 0) is 𝜌−algebra and 𝛼 = {≺ 𝑎,
(𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is IFS ofR.We say 𝛼 is (𝐼𝐹𝜌𝑖) ofR
if

(1) 𝜇𝛼(0) ≥ 𝜇𝛼(a) and ]𝛼(0) ≤ ]𝛼(𝑎),
(2) 𝜇𝛼(𝑎 ∙ 𝑏) ≥ min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)} and ]𝛼(𝑎 ∙ 𝑏) ≤

max{]𝛼(𝑎), ]𝛼(𝑏)}, ∀𝑎, 𝑏 ∈ R.

Example 13. Let (R, ∙, 0) be 𝜌−algebra in Example 9 and let
𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} = {(0, 0.9, 0.1),
(𝜔, 0.4, 0.3), (𝜕, 0.7, 0.3), (ℓ, 0.4, 0.2)} be IFS of R. Then, 𝛼 is
(𝐼𝐹𝜌𝑖) ofR.

Remark 14.

(1) If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑖) of R,
then 𝛼 is (𝐼𝐹𝜌𝑠).

(2) If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑖) of R,
then 𝛼 is (𝐼𝐹𝜌𝑠).

(3) If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑠) of R
and satisfies (2) in Definition 10, then 𝛼 is (𝐼𝐹𝜌𝑖).

(4) If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑠) of R
and satisfies (1) in Definition 12, then 𝛼 is (𝐼𝐹𝜌𝑖).

Lemma 15. If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑠) of
R, then 𝜇𝛼(0) ≥ 𝜇𝛼(𝑎) and ]𝛼(0) ≤ ]𝛼(𝑎), ∀𝑎 ∈ R.

Proof. Let 𝑎 ∈ R. Then 𝜇𝛼(0) = 𝜇𝛼(𝑎 ∙ 𝑎) ≥
min{𝜇𝛼(𝑎), 𝜇𝛼(𝑎)} = 𝜇𝛼(𝑎) and ]𝛼(0) = ]𝛼(𝑎 ∙ 𝑎) ≤
max{]𝛼(𝑎), ]𝑎(𝑎)} = ]𝛼(𝑎).



International Journal of Mathematics and Mathematical Sciences 3

Theorem 16. If {𝛼𝑖 =≺ 𝑎, (𝜇𝛼𝑖(𝑎), ]𝛼𝑖(𝑎)) ≻| 𝑎 ∈ R, 𝑖 ∈ 𝐼} is
any family of (𝐼𝐹𝜌𝑠) of R, then ⋂̃𝑖∈𝐼𝛼𝑖 is (𝐼𝐹𝜌𝑖) of R, where
⋂̃𝑖∈𝐼𝛼𝑖 = {≺ 𝑎, (min{𝜇𝛼𝑖(𝑎)},max{]𝛼𝑖(𝑎)}) ≻| 𝑎 ∈ R}.

Proof. Let 𝑎, 𝑏 ∈ R.Thus we consider that
min{𝜇𝛼𝑖(𝑎 ∙ 𝑏)} ≥ min{min{𝜇𝛼𝑖(𝑎), 𝜇𝛼𝑖(𝑏)}} =

min{min{𝜇𝛼𝑖(𝑎)},min{𝜇𝛼𝑖(𝑏)}}. Also max{]𝛼𝑖(𝑎 ∙ 𝑏)} ≤
max{max{]𝛼𝑖(𝑎), ]𝛼𝑖(𝑏)}} = max{max{]𝛼𝑖(𝑎)},max{]𝛼𝑖(𝑏)}}.

Thus ⋂̃𝑖∈𝐼𝛼𝑖 = {≺ 𝑎, (min{𝜇𝛼𝑖(𝑎)},max{]𝛼𝑖(𝑎)}) ≻| 𝑎 ∈
R} satisfies condition (2) in Definition 12. Also, let 𝑎 ∈
R. Hence, we consider that min{𝜇𝛼𝑖(0)} = min{𝜇𝛼𝑖(𝑎 ∙
𝑎)} ≥ min{𝜇𝛼𝑖(𝑎), 𝜇𝛼𝑖(𝑎)} = min{𝜇𝛼𝑖(𝑎)}. Furthermore,
max{]𝛼𝑖(0)} = max{]𝛼𝑖(𝑎 ∙ 𝑎)} ≤ max{]𝛼𝑖(𝑎), ]𝛼𝑖(𝑎)} =
max{]𝛼𝑖(𝑎)}.Then (1) inDefinition 12 is held and hence ⋂̃𝑖∈𝐼𝛼𝑖
is (𝐼 𝜌𝑖) ofR.

Theorem 17. If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑖) of
R, then 𝐾 =≺ 𝑎, 𝜇𝛼(𝑎), 1 − 𝜇𝛼(𝑎) ≻ is (𝐼𝐹𝜌𝑖) ofR.

Proof. We need only to show that 1 − 𝜇𝛼(𝑎) satisfies the first
and second condition in Definition 10. Assume ∀𝑎, 𝑏 ∈ R.
Then 1 − 𝜇𝛼(𝑎 ∙ 𝑏) ≤ 1 − min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)} = max{1 −
𝜇𝛼(𝑎), 1 − 𝜇𝛼(𝑏)}. Furthermore, 1 − 𝜇𝛼(𝑎) ≤ 1 − min{𝜇𝛼(𝑎 ∙
𝑏), 𝜇𝛼(𝑏)} = max{1 − 𝜇𝛼(𝑎 ∙ 𝑏), 1 − 𝜇𝛼(𝑏)}. Hence 𝐾 is (𝐼𝐹𝜌𝑖)
ofR.

Theorem 18. If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑠)
ofR, then the sets 𝑇𝜇 = {𝑎 ∈ R| 𝜇𝛼(𝑎) = 𝜇𝛼(0)} and 𝑇] = {𝑎 ∈
R | ]𝛼(𝑎) = ]𝛼(0)} are 𝜌−subalgebras ofR.

Proof. Let 𝑎, 𝑏 ∈ 𝑇𝜇. Hence 𝜇𝛼(𝑎) = 𝜇𝛼(0) = 𝜇𝛼(𝑏), and
𝜇𝛼(𝑎∙𝑏) ≥ min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)} = 𝜇𝛼(0).By using Lemma 15, we
consider that 𝜇𝛼(𝑎∙𝑏) = 𝜇𝛼(0) or equivalently 𝑎∙𝑏 ∈ 𝑇𝜇. Now,
let 𝑎, 𝑏 ∈ 𝑇].This implies that ]𝛼(𝑎 ∙ 𝑏) ≤ max{]𝛼(𝑎), ]𝛼(𝑏)} =
]𝛼(0) and, by applying Lemma 15, we conclude that ]𝛼(𝑎∙𝑏) =
]𝛼(0). Therefore 𝑎 ∙ 𝑏 ∈ 𝑇].

Definition 19. Assume 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R}
is (𝐼𝐹𝜌𝑠) ofR. We say 𝛼 has finite image, if each image of 𝜇𝛼
and ]𝛼 is with finite cardinality (i.e., Im(𝜇𝛼) = {𝜇𝛼(𝑎) | 𝑎 ∈ R}
and Im(]𝛼) = {]𝛼(𝑎) | 𝑎 ∈ R} such that |Im(𝜇𝛼)| < ∞ and
|Im(]𝛼)| < ∞).

Definition 20. Assume that 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), V𝛼(𝑎)) ≻| 𝑎 ∈
R} is (𝐼𝐹𝜌𝑠) ofR and 𝑟 ∈ [0, 1].The set𝑊(𝜇𝛼, 𝑟) = {𝑎 ∈ R |
𝜇𝛼(𝑎) ≥ 𝑟} (resp., 𝐿(]𝛼, 𝑟) = {𝑎 ∈ R | ]𝛼(𝑎) ≤ 𝑟}) is said to be
𝜇−level 𝑟−cut (resp., ]−level 𝑟−cut) of 𝛼.

Theorem 21. If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑠) of
R, then𝑊(𝜇𝛼, 𝑟) = {𝑎 ∈ R | 𝜇𝛼(𝑎) ≥ 𝑟} and 𝐿(]𝛼, 𝑟) = {𝑎 ∈
R | ]𝛼(𝑎) ≤ 𝑟}) of 𝛼 are 𝜌−subalgebras ofR.

Proof. Let 𝑎, 𝑏 ∈ 𝑊(𝜇𝛼, 𝑟). Hence 𝜇𝛼(𝑏) ≥ 𝑟 and 𝜇𝛼(𝑏) ≥ 𝑟.
This implies that 𝜇𝛼(𝑎 ∙ 𝑏) ≥ min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)} ≥ 𝑟 so that
𝑎 ∙ 𝑏 ∈ 𝑊(𝜇𝛼, 𝑟). Thus 𝑊(𝜇𝛼, 𝑟) is 𝜌−subalgebra of R Now
let 𝑎, 𝑏 ∈ 𝐿(]𝛼, 𝑟). Thus ]𝛼(𝑎 ∙ 𝑏) ≤ max{]𝛼(𝑎), ]𝛼(𝑏)} ≤ 𝑟
and 𝑎 ∙ 𝑏 ∈ 𝐿(]𝛼, 𝑟). Therefore 𝐿(]𝛼, 𝑟) is 𝜌−subalgebra of
R.

Theorem 22. If 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is IFS
of 𝜌 − algebra R such that the sets 𝑊(𝜇𝛼, 𝑟) and 𝐿(]𝛼, 𝑟) are
𝜌−subalgebras ofR, then 𝛼 is an (𝐼𝐹𝜌𝑠) ofR.

Proof. Suppose that there are two members 𝑡1 and 𝑡2 in R
with 𝜇𝛼(𝑡1 ∙ 𝑡2) < min{𝜇𝛼(𝑡1), 𝜇𝛼(𝑡2)}. Let 𝑡 = [𝜇𝛼(𝑡1 ∙
𝑡2) + min{𝜇𝛼(𝑡1), 𝜇𝛼(𝑡2)}]/2. Hence 𝜇𝛼(𝑡1 ∙ 𝑡2) < 𝑡 <
min{𝜇𝛼(𝑡1), 𝜇𝛼(𝑡2)} and so 𝑡1 ∙ 𝑡2 ∉ 𝑊(𝜇𝛼, 𝑡), but 𝑡1, 𝑡2 ∈
𝑊(𝜇𝛼, 𝑡). This is a contradiction, and therefore 𝜇𝛼(𝑎 ∙ 𝑏) ≥
min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)}, ∀𝑎, 𝑏 ∈ R. Now assume that ]𝛼(𝑡1 ∙ 𝑡2) >
min{]𝛼(𝑡1), ]𝛼(𝑡2)} for some 𝑡1, 𝑡2 ∈ R. Taking 𝑘 = []𝛼(𝑡1 ∙
𝑡2)+min{]𝛼(𝑡1), ]𝛼(𝑡2)}]/2, then we consider that ]𝛼(𝑡1 ∙ 𝑡2) >
𝑘 > max{]𝛼(𝑡1), ]𝛼(𝑡2)}. It follows that 𝑡1, 𝑡2 ∈ 𝐿(]𝛼, 𝑘) and
𝑡1 ∙ 𝑡2 ∉ 𝐿(]𝛼, 𝑘). This is a contradiction. Therefore, we
consider that ]𝛼(𝑎 ∙ 𝑏) ≤ max{]𝛼(𝑎), ]𝛼(𝑏)}, ∀𝑎, 𝑏 ∈ R. Then
𝐴 is (𝐼𝐹𝜌𝑠) ofR.

Theorem 23. If 𝐻 is 𝜌−subalgebra of R, then there exists
(𝐼𝐹𝜌𝑠)𝛼 ofR, where𝐻 satisfies both 𝜇−level 𝜌−subalgebra and
]−level 𝜌−subalgebra of 𝛼 inR.

Proof. Assume 𝐻 is 𝜌−subalgebra of R and let 𝜇𝛼 and ]𝛼 be
fuzzy sets inR defined by

𝜇𝛼 (𝑎) =
{
{
{

𝑘, 𝑖𝑓 𝑎 ∈ 𝐻
1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(1)

and

]𝛼 (𝑎) =
{
{
{

𝑚, 𝑖𝑓 𝛼 ∈ 𝐻
1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(2)

∀𝑎 ∈ R, where 𝑘,𝑚 ∈ (0, 1) are fixed real numbers with
𝑘 + 𝑚 < 1. Assume 𝑎, 𝑏 ∈ R. Then 𝑎 ∙ 𝑏 ∈ 𝐻 whenever
𝑎, 𝑏 ∈ 𝐻. This implies that 𝜇𝛼(𝑎 ∙ 𝑏) = min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)} and
]𝛼(𝑎 ∙ 𝑏) ≤ max{]𝛼(𝑎), ]𝛼(𝑏)}. If at least one of 𝑎 or 𝑏 does not
belong to 𝐻, then either 𝜇𝛼(𝑎) = 0 or 𝜇𝛼(𝑏) = 0 and hence
either ]𝛼(𝑎) = 1 or ]𝛼(𝑏) = 1. It follows that 𝜇𝛼(𝑎 ∙ 𝑏) ≥ 0 =
min{𝜇𝛼(𝑎), 𝜇𝛼(𝑏)}, ]𝛼(𝑎 ∙ 𝑏) ≤ 1 = max{]𝛼(𝑎), ]𝛼(𝑏)}. Hence
𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑠) ofR. Obviously,
𝑊(𝜇𝛼, 𝑘) = 𝐻 = 𝐿(]𝛼, 𝑚).

Definition 24. Assume Θ : R 󳨀→ 𝑌 is a mapping
of 𝜌−algebras. We say Θ is 𝜌−homomorphism if Θ(𝑎 ∙
𝑏) = Θ(𝑎) ∙ Θ(𝑏), ∀𝑎, 𝑏 ∈ R. And Θ−1(𝛽) = {≺
𝑎, (Θ−1𝜇𝛽(𝑎), Θ−1]𝛽(𝑎)) ≻| 𝑎 ∈ R} is IFS in 𝜌−algebra R
for any IFS 𝛽 = {≺ 𝑐, (𝜇𝛽(𝑐), ]𝛽(𝑐)) ≻| 𝑐 ∈ 𝑌} of 𝜌−algebra 𝑌.
Also, if 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is IFS in 𝜌−algebra
R, then Θ(𝛼) is IFS in 𝑌 and defined by

Θ(𝛼) = {≺ 𝑐, (Θsup𝜇𝛼(𝑦), Θinf]𝛼(𝑐)) ≻| 𝑐 ∈ 𝑌}, where

Θsup𝜇𝛼 (𝑐)

=
{
{
{

sup {𝜇𝛼 (𝑎) | 𝑎 ∈ Θ−1 (𝑐)} , 𝑖𝑓 Θ−1 (𝑐) ̸= 0,
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(3)
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and

Θinf]𝛼 (𝑐)

=
{
{
{

inf {]𝛼 (𝑎) | 𝑎 ∈ Θ−1 (𝑐)} , 𝑖𝑓 Θ−1 (𝑐) ̸= 0,
1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

,

∀𝑐 ∈ 𝑌.

(4)

Theorem25. LetΘ be 𝜌−homomorphism of 𝜌−algebraR into
𝜌−algebra𝑌 and𝐾 be (𝐼𝐹𝜌𝑠) of𝑌.ThenΘ−1(𝐾) is (𝐼𝐹𝜌𝑠) ofR.

Proof. Assuming 𝑎, 𝑏 ∈ R, we have 𝜇Θ−1(𝐾)(𝑎 ∙ 𝑏) = 𝜇𝐾(Θ(𝑎 ∙
𝑏)) = 𝜇𝐾(Θ(𝑎) ∙ Θ(𝑏)) ≥ min{𝜇𝐾(Θ(𝑎)), 𝜇𝐾(Θ(𝑏))} =
min{𝜇Θ−1(𝐾)(𝑎), 𝜇Θ−1(𝐾)(𝑏)} and ]Θ−1(𝐾)(𝑎 ∙ 𝑏) = ]𝐾(Θ(𝑎 ∙
𝑏)) = ]𝐾(Θ(𝑎) ∙ Θ(𝑏)) ≤ max{]𝐾(Θ(𝑎)), ]𝐾(Θ(𝑏))} =
max{]Θ−1(𝐾)(𝑎), ]Θ−1(𝐾)(𝑏)}. Thus Θ−1(𝐾) is (𝐼𝐹𝜌𝑠) ofR.

Theorem 26. Assume Θ : R 󳨀→ 𝑌 is 𝜌−homomorphism of
𝜌−algebraR into 𝜌−algebra 𝑌 and 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻|
𝑎 ∈ R} is (𝐼𝐹𝜌𝑠) ofR. ThenΘ(𝛼) =≺ 𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻
is (𝐼𝐹𝜌𝑠) of 𝑌.

Proof. Let 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} be
(𝐼𝐹𝜌𝑠) of R and let 𝑡1, 𝑡2 ∈ 𝑌. Noticing that {𝑎1 ∙ 𝑎2 |
𝑎1 ∈ Θ−1(𝑡1) and 𝑎2 ∈ Θ−1(𝑡2)} ⊆ {𝑎 ∈ R | 𝑎 ∈
Θ−1(𝑡1 ∙ 𝑡2)}, we have Θsup(𝜇𝛼)(𝑡1 ∙ 𝑡2) = sup{𝜇𝛼(𝑎) | 𝑎 ∈
Θ−1(𝑡1 ∗ 𝑡2)} ≥ sup{𝜇𝛼(𝑎1 ∙ 𝑎2) | 𝑎1 ∈ Θ−1(𝑡1) and 𝑎2 ∈
Θ−1(𝑡2)} ≥ sup{min{𝜇𝛼(𝑎1), 𝜇𝛼(𝑎2)} | 𝑎1 ∈ Θ−1(𝑡1) and 𝑎2 ∈
Θ−1(𝑡2)} = min{sup{𝜇𝛼(𝑎1) | 𝑎1 ∈ Θ−1(𝑡1)}, sup{𝜇𝛼(𝑎2) |
𝑎2 ∈ Θ−1(𝑡2)}} = min{Θsup(𝜇𝛼)(𝑡1), Θsup(𝜇𝛼)(𝑡2)}. Also, we
consider that Θinf (]𝛼)(𝑡1 ∙ 𝑡2) = inf{]𝛼(𝑎) | 𝑎 ∈ Θ−1(𝑡1 ∙
𝑡2)} ≤ inf{]𝛼(𝑎1 ∙ 𝑎2) | 𝑎1 ∈ Θ−1(𝑡1) and 𝑎2 ∈ Θ−1(𝑡2)} ≤
inf{max{]𝛼(𝑎1), ]𝛼(𝑎2)} | 𝑎1 ∈ Θ−1(𝑡1) and 𝑎2 ∈ Θ−1(𝑡2)}
= max{inf{]𝛼(𝑎1) | 𝑎1 ∈ Θ−1(𝑡1)}, inf{]𝛼(𝑎2) | 𝑎2 ∈
Θ−1(𝑡2)}} = max{Θsup(]𝛼)(𝑡1), Θsup(]𝛼)(𝑡2)}. Hence Θ(𝛼) =≺
𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻ is (𝐼𝐹𝜌𝑠) of 𝑌.

Theorem 27. Assume Θ : R 󳨀→ 𝑌 is 𝜌−homomorphism of
𝜌−algebraR into 𝜌−algebra 𝑌 and 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻|
𝑎 ∈ R} is (𝐼𝐹𝜌𝑖) ofR. ThenΘ(𝛼) =≺ 𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻
is (𝐼𝐹𝜌𝑖) of 𝑌.

Proof. Since 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑖)
of R, then by Theorem 26 and Remark 14 we have Θ(𝛼) =≺
𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻ as (𝐼𝐹𝜌𝑖) of 𝑌. Hence condition (1)
in Definition 10 is held. Since Θ is surjective, then for any
𝑡1, 𝑡2 ∈ 𝑌, ∃𝑎1, 𝑎2 ∈ R such that 𝑎1 ∈ Θ−1Θ(𝑎1) = Θ−1(𝑡1)
and 𝑎2 ∈ Θ−1Θ(𝑎2) = Θ−1(𝑡2). Also, 𝑎1 ∙ 𝑎2 ∈ Θ−1(𝑡1) ∙
Θ−1(𝑡1) = Θ−1(𝑡1 ∙ 𝑡1). Further, noticing that 𝜇𝛼(𝑎1) ≥
min{𝜇𝛼(𝑎1 ∙𝑎2), 𝜇𝛼(𝑎2)} and ]𝛼(𝑎1) ≤ max{]𝛼(𝑎1 ∙𝑎2), ]𝛼(𝑎2)},
for any 𝑡1, 𝑡2 ∈ 𝑌, we have Θsup(𝜇𝛼)(𝑡1) = sup{𝜇𝛼(𝑎) |
𝑎 ∈ Θ−1(𝑡1)} ≥ sup{min{𝜇𝛼(𝑎1 ∙ 𝑎2), 𝜇𝛼(𝑎2)} | 𝑎1 ∙ 𝑎2 ∈
Θ−1(𝑡1 ∙ 𝑡2) and 𝑎2 ∈ Θ−1(𝑡2)} = min{sup{𝜇𝛼(𝑎1 ∙ 𝑎2) |
𝑎1 ∙ 𝑎2 ∈ Θ−1(𝑡1 ∙ 𝑡2)}, sup{𝜇𝛼(𝑎2) | 𝑎2 ∈ Θ−1(𝑡2)}}
= min{Θsup(𝜇𝛼)(𝑡1 ∙ 𝑡2), Θsup(𝜇𝛼)(𝑡2)}. Also, Θsup(]𝛼)(𝑡1) =
sup{]𝛼(𝑎) | 𝑎 ∈ Θ−1(𝑡1)} ≤ sup{max{]𝛼(𝑎1 ∙ 𝑎2), ]𝛼(𝑎2)} |
𝑎1 ∙𝑎2 ∈ Θ−1(𝑡1 ∙ 𝑡2) and 𝑎2 ∈ Θ−1(𝑡2)} =max{sup{]𝛼(𝑎1 ∙𝑎2) |

𝑎1 ∙ 𝑎2 ∈ Θ−1(𝑡1 ∙ 𝑡2)}, sup{]𝛼(𝑎2) | 𝑎2 ∈ Θ−1(𝑡2)}} =
max{Θsup(]𝛼)(𝑡1 ∙ 𝑡2), Θsup(]𝛼)(𝑡2)}. Thus we consider that
Θ(𝛼) =≺ 𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻ is (𝐼𝐹𝜌𝑖) of 𝑌.

Theorem 28. Assume Θ : R 󳨀→ 𝑌 is 𝜌−homomorphism of
𝜌−algebraR into 𝜌−algebra 𝑌 and 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻|
𝑎 ∈ R} is (𝐼𝐹𝜌𝑖) ofR. ThenΘ(𝛼) =≺ 𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻
is (𝐼𝐹𝜌𝑖) of 𝑌.

Proof. Since 𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is
(𝐼𝐹𝜌𝑖) of R. Then by Theorem 26 and Remark 14 we have
Θ(𝛼) =≺ 𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻ as (𝐼𝐹𝜌𝑠) of 𝑌. Hence
condition (2) in Definition 12 is held. Assume that 0R and
0𝑌 are constants of 𝜌 − algebras R and 𝑌, respectively. Since
𝛼 = {≺ 𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} is (𝐼𝐹𝜌𝑖) of R, hence
𝜇𝛼(0R) ≥ 𝜇𝛼(𝑎) and ]𝛼(0R) ≤ ]𝛼(𝑎), ∀𝑎 ∈ R. Since Θ is
𝜌−homomorphism of 𝜌−algebras, then Θ(0R) = 0𝑌, where
0R and 0𝑌 are constants for 𝜌−algebrasR and𝑌, respectively.
Noticing that 0R ∈ Θ−1(0𝑌) and {𝑎 | 𝑎 ∈ Θ−1(𝑏)} ⊆
{𝑎 | 𝑎 ∈ R} for any 𝑏 ∈ 𝑌, then we have Θsup(𝜇𝛼)(0𝑌) =
sup{𝜇𝛼(𝑎) | 𝑎 ∈ Θ−1(0𝑌)} = 𝜇𝛼(0R) ≥ sup{𝜇𝛼(𝑎) | 𝑎 ∈
R} ≥ sup{𝜇𝛼(𝑎) | 𝑎 ∈ Θ−1(𝑏)} = Θsup(𝜇𝛼)(𝑏). Also,
Θsup(]𝛼)(0𝑌) = inf{]𝛼(𝑎) | 𝑎 ∈ Θ−1(0𝑌)} = ]𝛼(0R) ≤
inf{]𝛼(𝑎) | 𝑎 ∈ R} ≤ inf{]𝛼(𝑎) | 𝑎 ∈ Θ−1(𝑏)} = Θsup(]𝛼)(𝑏).
Hence Θ(𝛼) =≺ 𝑏, (Θsup(𝜇𝛼), Θinf (]𝛼)) ≻ is (𝐼𝐹𝜌𝑖) of 𝑌.

4. Some Applications on 𝐼𝐹𝜌𝑆(R)
In this section, some applications on 𝐼𝐹𝜌𝑆(R) are shown like
the binary relations ≈

𝜇
, ≈

]
and Γ𝑟 on 𝐼𝐹𝜌𝑆(R). Also, in this

section the equivalence classes for theses binary relations are
given, and some of their basic properties are studied.

4.1. Equivalence Classes Modulo (≈
𝜇
/≈
]
). Denote the collection

of all (𝐼𝐹𝜌𝑆) ofR by 𝐼𝐹𝜌𝑆(R) and let 𝑟 ∈ [0, 1]. Define binary
relations ≈

𝜇
and ≈

]
on 𝐼𝐹𝜌𝑆(R) as follows.

𝛼 ≈
𝜇

𝛽 ⇐⇒ 𝑊(𝜇𝛼, 𝑟) = 𝑊(𝜇𝛽, 𝑟) and 𝛼 ≈
]
𝛽 ⇐⇒

𝐿(]𝛼, 𝑟) = 𝐿(]𝛽, 𝑟), respectively, for 𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻ and
𝛽 =≺ 𝑎, 𝜇𝛽, ]𝛽 ≻ in 𝐼𝐹𝜌𝑆(R). Moreover, it is clear that ≈

𝜇
and ≈

]
are equivalence relations on 𝐼𝐹𝜌𝑆(R). If 𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻∈
𝐼𝐹𝜌𝑆(R), then we refer to the equivalence class of 𝛼 =≺
𝑎, 𝜇𝛼, ]𝛼 ≻ modulo ≈

𝜇
(resp., ≈

]
) by ⟨𝛼⟩𝜇 (resp., ⟨𝛼⟩]), and we

refer to the family of all equivalence classes of 𝛼 modulo ≈
𝜇

(resp.,≈
]
) by 𝐼𝐹𝜌𝑆(R)/ ≈

𝜇
(resp., 𝐼𝐹𝜌𝑆(𝑋)/ ≈] ); i.e., 𝐼𝐹𝜌𝑆(R)/ ≈

𝜇
=

{⟨𝛼⟩𝜇 | 𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻∈ 𝐼𝐹𝜌𝑆(R)} (resp., 𝐼𝐹𝜌𝑆(R)/ ≈
]
=

{⟨𝛼⟩𝜇 | 𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻∈ 𝐼𝐹𝜌𝑆(R)}). Moreover, denote the
collection of all 𝜌−ideals of R by 𝜌𝐼(R) and let 𝑟 ∈ [0, 1].
Let 𝜎𝑟 and 𝜂𝑟 be maps from 𝐼𝐹𝜌𝑆(R) to 𝜌𝐼(R) ∪ {𝜙} by
𝜎𝑟(𝛼) = 𝑊(𝜇𝛼, 𝑟) and 𝜂𝑟(𝛼) = 𝐿(]𝛼, 𝑟), respectively, ∀𝛼 =≺
𝑎, 𝜇𝛼, ]𝛼 ≻∈ 𝐼𝐹𝜌𝑆(R). In other words, 𝜎𝑟 and 𝜂𝑟 are well-
defined.

Theorem 29. Let 𝜎𝑟 and 𝜂𝑟 be the maps from 𝐼𝐹𝜌𝑆(R) to
𝜌𝐼(R) ∪ {𝜙}. Then 𝜎𝑟 and 𝜂𝑟 are surjective, for each 𝑟 ∈ (0, 1).
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Proof. Let 𝑟 ∈ (0, 1). Then 󵱰0 =≺ 𝑎, 0, 1 ≻ is in 𝐼𝐹𝜌𝑆(R), where
each one of 0 and 1 is (FS) in R defined by 0(𝑎) = 0 and
1(𝑎) = 1, ∀𝑎 ∈ R. Furthermore, 𝜎𝑟(󵱰0) = 𝑊(0, 𝑟) = 𝜙 =
𝐿(1, 𝑟) = 𝜂𝑟(󵱰0). Let 𝜙 ̸= 𝐻 ∈ 𝜌𝐼(R). ∀𝑎 ∈ R, let 𝜇𝐻(𝑎) =
{ 1, 𝑖𝑓 𝑎∈𝐻0, 𝑖𝑓 𝑎∉𝐻 , and ]𝐻(𝑎) = 1 − 𝜇𝐻(𝑎); thus 𝜎𝑟( 󵱰𝐻) = 𝑊(𝜇𝐻, 𝑟) =
𝐻 = 𝐿(]𝐻, 𝑟) = 𝜂𝑟( 󵱰𝐻). Now, we want to prove that 󵱰𝐻 =≺
𝑥, 𝜇𝐻, ]𝐻 ≻∈ 𝐼𝐹𝜌𝑆(R). Since 𝐻 ∈ 𝜌𝐼(R), then by condition
(1) in Definition 5 we have 𝐻 as 𝜌−subalgebra of R and this
implies that 𝑊(𝜇𝐻, 𝑟) and 𝐿(]𝐻, 𝑟) are 𝜌−subalgebras of R.
By Theorem 22 we consider 󵱰𝐻 =≺ 𝑎, 𝜇𝐻, ]𝐻 ≻∈ 𝐼𝐹𝜌𝑆(R).
Therefore, ∀𝐻 ∈ 𝜌𝐼(R) we consider 𝜎𝑟( 󵱰𝐻) = 𝐻 and 𝜂𝑟( 󵱰𝐻) =
𝐻 for some 󵱰𝐻 ∈ 𝐼𝐹𝜌𝑆(R).This completes the proof.

Theorem 30. Let 𝐼𝐹𝜌𝑆(R)/ ≈
𝜇
and 𝐼𝐹𝜌𝑆(R)/ ≈

]
be quotient

sets. Then they are equipotent to 𝜌𝐼(R) ∪ {𝜙}, ∀𝑟 ∈ (0, 1).

Proof. Assume 𝑟 ∈ (0, 1) and let 𝜎󸀠𝑟(resp. 𝜂󸀠𝑟) be a map from
𝐼𝐹𝜌𝑆(R)/ ≈

𝜇
(resp., 𝐼𝐹𝜌𝑆(R)/ ≈

]
) to 𝜌𝐼(R) ∪ {𝜙} and they

are defined by 𝜎󸀠𝑟(⟨𝛼⟩𝜇) = 𝜎𝑟(𝛼) (resp. 𝜂󸀠𝑟(⟨𝛼⟩]) = 𝜂𝑟(𝛼)),
∀𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻∈ 𝐼𝐹𝜌𝑆(R). Hence, 𝛼 ≈

𝜇
𝛽 and 𝛼 ≈

]
𝛽,

∀𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻ and 𝛽 =≺ 𝑎, 𝜇𝛽, ]𝛽 ≻ in 𝐼𝐹𝜌𝑆(R), if
𝑊(𝜇𝐴, 𝑟) = 𝑊(𝜇𝐵, 𝑟) and 𝐿(]𝐴, 𝑟) = 𝐿(]𝐵, 𝑟). Then ⟨𝛼⟩𝜇 =
⟨𝛽⟩𝜇 and ⟨𝛼⟩] = ⟨𝛽⟩]. This implies the maps 𝜎󸀠𝑟 and 𝜂󸀠𝑟 are
injective. Moreover, let 𝜙 ̸= 𝐻 ∈ 𝜌𝐼(R) and ∀𝑎 ∈ R, let

𝜇𝐻 (𝑎) =
{
{
{

1, 𝑖𝑓 𝑎 ∈ 𝐻
0, 𝑖𝑓 𝑎 ∉ 𝐻,

(5)

]𝐻(𝑎) = 1 − 𝜇𝐻(𝑎), and thus 󵱰𝐻 =≺ 𝑎, 𝜇𝐻, ]𝐻 ≻∈ 𝐼𝐹𝜌𝑆(R).
We consider that 𝜎󸀠𝑟(⟨ 󵱰𝐻⟩𝜇) = 𝜎𝑟( 󵱰𝐻) = 𝑊(𝜇𝐻, 𝑟) = 𝐻,
and 𝜂󸀠𝑟(⟨ 󵱰𝐻⟩]) = 𝜂𝑟( 󵱰𝐻) = 𝐿(]𝐻, 𝑟) = 𝐻. Finally, for 󵱰0 =≺
𝑎, 0, 1 ≻∈ 𝐼𝐹𝜌𝑆(R) we have 𝜎󸀠𝑟(⟨󵱰0⟩𝜇) = 𝜎𝑟(󵱰0) = 𝑊(0, 𝑟) = 𝜙
and 𝜂󸀠𝑟(⟨󵱰0⟩]) = 𝜂𝑟(󵱰0) = 𝐿(1, 𝑟) = 𝜙. Therefore 𝜎󸀠𝑟 and 𝜂󸀠𝑟 are
surjective, and we are done.

4.2. Equivalence Class Modulo Γ𝑟. Another relation Γ𝑟 on
𝐼𝐹𝜌𝑆(R) is defined by (𝛼, 𝛽) ∈ Γ𝑟 ⇐⇒ 𝑊(𝜇𝛼, 𝑟) ∩ 𝐿(]𝛼, 𝑟) =
𝑊(𝜇𝛽, 𝑟) ∩ 𝐿(]𝛽, 𝑟), ∀𝑟 ∈ [0, 1] and, ∀𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻,
𝛽 =≺ 𝑎, 𝜇𝛽, ]𝛽 ≻∈ 𝐼𝐹𝜌𝑆(R). Moreover, the relation Γ𝑟 is
also an equivalence relation on 𝐼𝐹𝜌𝑆(R). Let ⟨𝛼⟩Γ𝑟 denote the
equivalence class of 𝛼 =≺ 𝑎, 𝜇𝛼, ]𝛼 ≻ modulo Γ𝑟, ∀𝛼 =≺
𝑎, 𝜇𝛼, ]𝛼 ≻∈ 𝐼𝐹𝜌𝑆(R).

Theorem 31. For any 𝑟 ∈ (0, 1), the map 𝜓𝑟 : 𝐼𝐹𝜌𝑆(R) 󳨀→
𝜌𝐼(R) ∪ {𝜙} defined by 𝜓𝑟(R) = 𝜎𝑟(R) ∩ 𝜂𝑟(R), ∀𝛼 =≺
𝑎, 𝜇𝛼, ]𝛼 ≻∈ 𝐼𝐹𝜌𝑆(R) is surjective.

Proof. Let 𝑟 ∈ (0, 1). For 󵱰0 =≺ 𝑎, 0, 1 ≻∈ 𝐼𝐹𝜌𝑆(R), we get
𝜓𝑟(󵱰0) = 𝜎𝑟(󵱰0) ∩ 𝜂𝑟(󵱰0) = 𝑊(0, 𝑟) ∩ 𝐿(1, 𝑟) = 𝜙. For any 𝐻 ∈
𝐼𝐹𝜌𝑆(R), there exists 󵱰𝐻 =≺ 𝑎, 𝜇𝐻, ]𝐻 ≻∈ 𝐼𝐹𝜌𝑆(R), where

𝜇𝐻 (𝑎) =
{
{
{

1, 𝑖𝑓 𝑎 ∈ 𝐻
0, 𝑖𝑓 𝑎 ∉ 𝐻

(6)

and ]𝐻(𝑎) = 1 − 𝜇𝐻(𝑎) such that 𝜓𝑟( 󵱰𝐻) = 𝜎𝑟( 󵱰𝐻) ∩ 𝜂𝑟( 󵱰𝐻) =
𝑊(𝜇𝐻, 𝑟) ∩ 𝐿(]𝐻, 𝑟) = 𝐻.This completes the proof.

Theorem 32. For any 𝑟 ∈ (0, 1), the quotient set 𝐼𝐹𝜌𝑆(R)/Γ𝑟 is
equipotent to 𝜌𝐼(𝑋) ∪ {𝜙}.

Proof. Assume 𝑟 ∈ (0, 1) and𝜓󸀠𝑟 : 𝐼𝐹𝜌𝑆(R)/Γ𝑟 󳨀→ 𝜌𝐼(R)∪{𝜙}
is a map defined by 𝜓󸀠𝑟(⟨𝛼⟩Γ𝑟) = 𝜓𝑟(𝛼), ∀⟨𝛼⟩Γ𝑟 ∈ 𝐼𝐹𝜌𝑆(R)/Γ𝑟.

Suppose that 𝜓󸀠𝑟(⟨𝛼⟩Γ𝑟) = 𝜓󸀠𝑟(⟨𝛽⟩Γ𝑟) for any ⟨𝛼⟩Γ𝑟 , ⟨𝛽⟩Γ𝑟 ∈𝐼𝐹𝜌𝑆(R)/Γ𝑟. We consider that 𝜎𝑟(𝛼) ∩ 𝜂𝑟(𝛼) = 𝜎𝑟(𝛽) ∩
𝜂𝑟(𝛽), i.e., 𝑊(𝜇𝛼, 𝑟) ∩ 𝐿(]𝛼, 𝑟) = 𝑊(𝜇𝛽, 𝑟) ∩ 𝐿(]𝛽, 𝑟). Hence
(𝛼, 𝛽) ∈ Γ𝑟, and so ⟨𝛼⟩Γ𝑟 = ⟨𝛽⟩Γ𝑟 . Therefore 𝜓󸀠𝑟 is injective.
Furthermore, for 󵱰0 =≺ 𝑎, 0, 1 ≻∈ 𝐼𝐹𝜌𝑆(R) we get 𝜓󸀠𝑟(⟨󵱰0⟩Γ𝑟)
= 𝜓𝑟(󵱰0) = 𝜎𝑟(󵱰0) ∩ 𝜂𝑟(󵱰0) = 𝑊(0, 𝑟) ∩ 𝐿(1, 𝑟) = 𝜙. Let 󵱰𝐻 =≺
𝑎, 𝜇𝐻, ]𝐻 ≻∈ 𝐼𝐹𝜌𝑆(R), ∀𝐻 ∈ 𝐼𝐹𝜌𝑆(R), be the same (𝐼𝐹𝜌𝑆) of
𝑋 that is defined in the proof of Theorem 22. Then we have
𝜓󸀠𝑟(⟨ 󵱰𝐻⟩Γ𝑟) = 𝜓𝑟( 󵱰𝐻) = 𝜎𝑟( 󵱰𝐻)∩ 𝜂𝑟( 󵱰𝐻) = 𝑊(𝜇𝐻, 𝑟) ∩ 𝐿(]𝐻, 𝑟) =
𝐻. Hence 𝜓󸀠𝑟 is surjective. This completes the proof.

5. Conclusion

In this work, we introduce the notions of (𝐼𝐹𝜌𝑠), (𝐼𝐹𝜌𝑖),
(𝐼𝐹𝜌𝑖), and others; then we proved that for any 𝜌−subalgebra
of 𝑋 can be considered as both 𝜇−level 𝜌−subalgebra and
]−level 𝜌−subalgebra of some (𝐼𝐹𝜌𝑠) of R. At the same
time, we proved that intersection of any family of (𝐼𝐹𝜌𝑠)
of 𝑋 is (𝐼𝐹𝜌𝑖) of 𝑋. Also, we show that if IFS 𝛼 = {≺
𝑎, (𝜇𝛼(𝑎), ]𝛼(𝑎)) ≻| 𝑎 ∈ R} of 𝜌 − algebra 𝑋 such
that the sets 𝑊(𝜇𝛼, 𝑟) and 𝐿(]𝛼, 𝑟) are 𝜌−subalgebras of R.
Then 𝛼 is (𝐼𝐹𝜌𝑠) of R. Further, some interesting theorems
about 𝜌−homomorphism are given. Finally, some binary
relations ≈

𝜇
, ≈
]
and Γ𝑟 on 𝐼𝐹𝜌𝑆(R) are obtained, and some of

their basic properties are discussed. In future work, we will
investigate IF in new types of algebras like 𝐵𝐶𝐿+−algebras,
𝐵𝐶𝐿+−subalgebras, 𝐵𝐶𝐿+−ideals and others. Next, we will
study their characteristics.
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