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ABSTRACT 

Precorroded steel A-106 B specimens were prepared at 

different surface roughness. These specimens were immersed 

in corrosive ferric chloride solution in different concentrations      

(1.5, 3.0, 4.5, 6.0% wt.) at specified durations to initiate 

primarily the pitting corrosion. The corrosion pits distribution 

depend on the corrosive concentration, degree of surface 

roughness, and immersion duration.  The pits were 

characterized using metallurgical microscope. Also, The 

pitting characteristics aimed to be predicted by “Artificial 

Neural Networks” (ANNs). The results obtained of pit 

quantification by ANNs predictions are shown to be agreed 

well against experimental values. i.e. R2=0.9839 
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1. INTRODUCTION 

The presence of corrosion is known to reduce the failure 

resistance of materials. Pitting is one of the most destructive 

and insidious form of corrosion, it causes equipment to fail 

because of perforation [1,2]. A common observation agreed 

upon by many researchers [2-5] was that the presence of pitting 

frequently associated with significant fatigue life reduction, 

due to crack originating from corrosion pit. 

It was stated that corrosion in general is           a stress raiser 

that can lead to fatigue cracking, with pitting being especially 

detrimental [6]. 

The assessment of deleterious effect of pitting on structure’s 

fatigue performance is through quantification of pitting. This 

has implies, the size, density and morphology of corrosion pits. 

The corrosion product inside pitting damage can be a further 

confounding influence in measurement efforts. Several 

techniques have been employed for pit measurements such as 

roughness measurement [6,7], microscopy [8,9], and 

electrochemical such as impedence measurements. 

Practically a sectioning method followed by image analysis 

was successfully used by Codaro et al. [10] for pit examination 

using SEM & TEM. 

The present work is a part of a comprehensive work concerned 

with computational method in mechanics of fracture. The 

experimental study deals with the preparation of pre-corroded 

specimens throughout  pit initiation arbitrarily on steel A-106 

B which were then subjected to fatigue test.  An attempt to 

quantify the corrosion pit by “Artificial Neural Networks” was 

carried out. The method for pitting quantification with several 

experimental observations will be used in the future adaptation  

 

of the proposed life prediction for the pitted material under 

investigation.  

2. EXPERIMENTAL WORK 

2.1 Specimen Preparation 

The specimens were prepared initially from solid bar (length 

30 cm, diameter 12 mm). The diameter was reduced by 

“Turning Machine” to 8.0 mm. The bar is then cut into 50 

pieces each of 147 mm length as shown in plate (1) below. 

 

Plate 1: Specimens of the present experimental study 

The chemical composition of the solid bar (Steel A106-B) 

given by ASTM Standard Specification [11]: (max 0.3% C,  

0.29–1.06% Mn, max 0.035% P, max 0.035% S, min 0.10% Si, 

max 0.40% Cr, max 0.40% Cu, max 0.15% Molybdenum, max 

0.40% Ni, max 0.08% V). 

2.2 Surface Preparation 

The specimens were subjected to different degrees of surface 

finish. Each specimen was ground by certain grit emery paper 

to produce different degrees of surface roughness. The 

measurements of surface roughness were performed using 

surface roughness tester (Plate 2) portable-type (Qualitest TR-

110 , US) in terms of surface roughness factor Ra in (µm), for 

50 specimens. 
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Plate 2: Portable Surface Roughness Tester 

The prepared specimen surfaces with different surface 

roughness factor were utilized for precorrosion stage. For 

instance, rough surface corrodes and enhances pitting corrosion 

more readily than smooth surface [3]. 

2.3 Pit Initiation 

The freshly prepared specimens with the specified surface area 

of (20 cm2) were subjected to corrosion prior to fatigue loading 

or (prior to fracture experiment) as this work is a part of 

extended research on special type of fatigue fracture 

mechanics. The corrosion process involved immersion in 

different concentration of corrosive ferric chloride (1.5, 3.0, 

4.5, 6.0% wt.) at a temperature of 27±2 oC, within a specified 

duration period of 48, 96, 144 & 192 hours in each individual 

concentration. After the specimens had been corroded, the 

corrosion pits were characterized using metallurgical 

microscope (Olympus, Japan). The numbers of pits per unit 

area were determined as pitting density (PD). The most 

important was the pit depths (pd), which were determined 

according to the standard method given by ASTM G46-95 

[12,13]. 

There are many factors concerned with corrosion pit as pit 

density, pit depth, pit proximity, pit geometry and pit surface 

area. The treatment of specimens with ferric chloride is to 

initiate pitting corrosion under the effect of aggressive chloride 

ions. 

The goal of the pre-corrosion testing was to determine how pit-

to-crack transition occurs when the specimens are subjected to 

cyclic loading. 

However, the present work concern with: a) measurements of 

pitting density and pitting depth by laboratory testing method, 

and b) using ANNs [14-16] to predict both of these 

characteristics. 

3. NEURAL NETWORK 

ARCHITECTURE  

In this work neural network is used for prediction pitting 

density and pit depth in different concentration of ferric 

chloride, immersion duration, and roughness factor. 

The architecture of neural network for this study is given in 

Figure 3. It consists of three nodes in the input layer,  two 
hidden layers were chosen while it gives minimum mean 
square error (MSE) , the first hidden layer has (16) nodes, and 

the second hidden layer has (9) nodes. The output layer has 

two nodes which represent pitting density, and pit depth.   

The decision function used for both of the first hidden layer 

and for second hidden layer is (tansig), and for the output 

layer is (purelin). These functions were chosen for first 

hidden, second hidden and the output was obtained by trial 

and error until the best performance was achieved by 

approaching the minimum values of mean square error. 

The training was done after obtaining the experimental results, 

which was used to train the neural networks using 40 data out 

from 50 data of the experiment results, the remaining 10 data 

will be used for testing the trained neural network. 

This neural network simulation is done by “MATLAB 

R2007A”. 

4. RESULTS AND DISCUSSION 

The treatment of specimens with ferric chloride is carried out 

to initiate corrosion pits under the effect of aggressive chloride 

ions at static condition and normal temperature. Thus, these 

precorroded specimens were then used for further study for pit-

to-crack transition experiment which will be presented in future 

publication. The presence of pits considered as crack origin 

[6,13]. 

The initiated pits under different concentration of corrosive 

chloride, at specified immersion durations and different 

roughness factors were identified and characterized by 

laboratory test experiment. 

4.1 Laboratory Experiment 

The experimental results showed evidently that the corrosion 

pit growth increases with the increase of corrosive 

concentration of 1.5, 3.0, 4.5, 6.0% wt. and with increase of 

immersion duration in terms of pitting density (PD) and pit 

depths (pd) respectively. Also, the degree of roughness in term 

of roughness factor enhances the progress of (PD) & (pd) 

respectively i.e. an increase of the roughness factor (Ra) 

resulted in further growth of corrosion pits. Since rough surface 

corrodes more readily than smooth surface [3]. 

However, the maximum (PD) and (pd) values at maximum 

duration (192 h.), maximum corrosive concentration 6.0% 

wt./v. and with maximum roughness factor (Ra=15μm) were 

found 6.99 pit/cm2 and 2.45 mm respectively. 

4.2 Artificial Neural Networks 

The proposed structure of ANNs is presented in Fig. 1. The 

prediction of pitting density and pit depth within the 

experimental values of different corrosive concentrations, 

immersion durations and roughness factor were determined and 

verified.  

The results predicted by artificial neural networks showed a 

reasonable agreement with R2=0.9839 as shown in Fig. 2 

Two sets of data were presented by ANNs: 

First, (a) pitting density with different roughness factor at 

different corrosive concentrations as shown in Fig. 3. (b) 

pitting depth with different roughness factor at different 

corrosive concentrations as shown in Fig. 4. In these figures, 

pitting density and pitting surface depth increased directly 
with the increase of both roughness factor and corrosive 
concentrations. 

Second, (a) pitting density with different roughness factor at 

different immersion durations as shown in Fig. 5. (b)  pitting 

depth with different roughness factor at different immersion 

duration as shown in Fig. 6. Also, pitting density and pitting 
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depth increased directly with increasing of roughness factor 

and immersion duration. 

The prediction of pitting corrosion behavior can be best 

described using three sets of histograms: (a) pitting density 

with corrosive concentration at different roughness factor (6, 9, 

12 , 15 µm) as shown in Fig.7 at immersion durations of (48, 

96, 144 h.), (b)  pitting depth with corrosive concentration at 

different roughness factor (6, 9, 12 , 15 µm) as shown in Fig. 8 

at immersion duration of (48, 96, 144h.). The results showed 

that pitting density and pit depth increased with increasing 

corrosive concentrations. Moreover, (c) pitting density and 

pitting depth at different immersion duration at Ra = 8.0µm as 

shown in Figs. 9 & 10 respectively. Therefore, increasing 

immersion duration increase pitting density and pitting depth.  

However, the results of 192 hour immersion duration were not 

presented, because of limiting value of corrosion parameters 

observed in such prolonged immersion duration.  

Future work should include study of the combined effect of pit 

proximity and pit surface area with pit density and depth on the 

transition to fatigue cracking. 

5. CONCLUSIONS 

1. The artificial neural networks results were found well 

agreed with that obtained by laboratory test. 

2. Increase of corrosive concentrations with extended 

immersion duration resulted in an increase of pitting 

density and pitting depth. 
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Fig. (2) Comparison between ANN Results & Target Results 

using Resiliant Backpropagation Algorithm
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Fig. (7) Pitting density with roughness factor at 144 hour 

immersion duration
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Fig. (4) Pit depth with roughness factor at 144 hour immersion 

duration
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Fig. (15) Pitting density with roughness factor at 6%  ferric 

chloride concentration 
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Fig. (16) Pit depth with roughness factor at 6%  ferric chloride 

concentration 
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Fig.(7) Pitting density with ferric chloride conc. at different 

values of roughness factor with 96 hr. immersion duration
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Fig.(8) Pit depth with ferric chloride concentration at different 

values of roughness factor with 96 hr. immersion duration
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Fig. (5) Pitting density with roughness factor at 6% ferric 
chloride concentration 

Fig. 4: Pit depth with roughness factor at 

144 hour immersion duration 

Fig. 5: Pitting density with roughness factor 

at 6% ferric chloride concentration 

Fig. 6: Pit depth with roughness factor at 

6% ferric chloride concentration 

Fig. 7: Pitting density with ferric chloride 

conc. at different roghness factor with 96 hr. 

Fig. 8: Pit depth with ferric chloride conc. at 

different roghness factor with 96 hr. 
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Fig.(9) Pitting density with ferric chloride concentration at different 

values of immersion duration with roughness factor =8
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Fig.(10) Pit depth with ferric chloride concentration at different 

values of immersion duration with roughness factor =8
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Fig. 9: Pitting density with ferric chloride 

conc. at different values of immersion 

duration 

Fig. 10: Pit depth with ferric chloride conc. 

at different values of immersion duration 


