ON GENERALIZATION OF SUMMATION- INTEGRAL SZÃSZ OPERATORS

Amal K. Hassan

Dept of Mathematics, College of Science , University of Basrah , Basrah , IRAQ.

ISSN -1817 -2695

((Received 26/10/2008, Accepted 11/2/2009))

ABSTRACT.

In this paper, we introduce and study some direct results in simultaneous approximation for a generalization of Summation –Integral Szãsz type operator $M_n(f(t);x)$. First, we establish the basic pointwise convergence theorem and then proceed to discuss the Voronovaskaja-type asymptotic formula. Finally, we obtain an error estimate in terms of modulus of continuity of the function being approximated.

Keywords: Linear positive operators, Simultaneous approximation, Voronovaskaja-type asymptotic formula, Degree of approximation, Modulus of continuity.

1. INTRODUCTION

Let $m \in N$ (the set of positive integer), for sufficiently small values of $\eta > 0$, the m-th order

modulus of continuity $\omega_m(f, \eta; I)$ for a continuous function f on the interval I is defined as:

$$\omega_m(f,\eta;I) = \sup \left\{ \left| \Delta_h^m f(x) \right| : \left| h \right| \le \eta, \ x, x + mh \in I \right\},\,$$

where $\Delta_h^m f(x)$ is the *m*-th order forward difference with step length *h* and is given by:

$$\Delta_h^m f(t) = \sum_{i=0}^m (-1)^{m-i} \binom{m}{i} f(t+ih).$$

For m = 1, $\omega_m(f, \eta; I)$ is written simply as $\omega_f(\eta; I)$ or $\omega(f, \eta; I)$.

Voronovaskaja in [8] found the following relation for Bernstein operators

$$B_n(f;x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} , x \in [0,1]:$$

$$\lim_{n\to 0} n \left(B_n(f(t); x) - f(x) \right) = \frac{x(1-x)}{2} f''(x) .$$

This relation showed that the degree of approximation Bernstein operators is O(1). Many researchers were found similar relations for another

sequences of linear positive operators these relations are called Voronovaskaja-type asymptotic formula.

Many papers introduced new sequences of linear positive operators and discussed the

Voronovaskaja-type asymptotic formula for these sequences. In this direction we refer to [1,5,7].

independently Mazher and Totic [6] and Kasana et.al [3] proposed the following summation –Integral Szasz operators to approximate unbounded functions

$$L_n(f(t);x) = n \sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q_{n,k}(t) f(t) dt,$$

where,
$$f \in C_{\alpha}[0,\infty) = \{ f \in C[0,\infty) : |f(t)| \le Ce^{\alpha t} \text{ for some } C > 0, \alpha > 0 \}, \ q_{n,k}(x) = \frac{e^{-nx}(nx)^k}{k!}$$
.

on $[0,\infty)$ as:

In this paper, we introduce a generalization for the operator $L_n(f(t);x)$ denoted by $M_n(f(t);x)$ as follows:

For $v \in N^0 = \{0,1,2,...\}$ we define

(1.1)
$$M_n(f(t);x) = n \sum_{k=0}^{\infty} q_{n,k}(x) \int_0^{\infty} q_{n,k+\nu}(t) f(t) dt$$
,

Note that $M_n(f(t);x) = L_n(f(t);x)$ whenever $\mathbf{v} = \mathbf{0}$.

We may also write the operator (1.1) as $M_n(f(t);x) = \int W_n(t,x)f(t) dt$ where

$$W_n(t,x) = n \sum_{k=0}^{\infty} q_{n,k}(x) q_{n,k+\nu}(t).$$

The space $C_{\alpha}[0,\infty)$ is normed by

most [m/2];

For

(iii)

$$||f||_{C_{\alpha}} = \sup_{0 \le t \le \infty} |f(t)| e^{-\alpha t}.$$

every $x \in [0, \infty)$, $\mu_{n,m}(x) = O(n^{-[(m+1)/2]})$.

From above lemma, we get

(2.1) $\sum_{k=0}^{\infty} q_{n,k}(x)(k-nx)^{2j} = n^{2j} \left(\mu_{n,2j}(x) \right)$

For $m \in \mathbb{N}^0$, the m-th order moment $T_{m,m}(x)$ for

the modified Szãsz operators is defined as:

Throughout this paper, we assume that C denotes a positive constant not necessarily the same at all occurrence and $[\beta]$ denotes the integer part of β .

 $\mu_{n,m}(x)$ is a polynomial in x of degree at

 $= n^{2j} \{ O(n^{-j}) \}$

 $= O(n^j)$.

2. PRELIMINARY RESULTS

For $f \in C[0,\infty)$ the classic Szãsz operators is

defined as [2]
$$S_n(f;x) = \sum_{k=0}^{\infty} q_{n,k}(x) f\left(\frac{k}{n}\right)$$
,

 $x \in [0, \infty)$ and for $m \in \mathbb{N}^0$ (the set of nonnegative integers), the m-th order moment of the Szãsz operators is defined

$$\mu_{n,m}(x) = \sum_{k=0}^{\infty} q_{n,k}(x) \left(\frac{k}{n} - x\right)^{m}.$$

LEMMA 2.1. [2] For $m \in \mathbb{N}^0$, the function defined above, has the following $\mu_{n,m}(x)$ properties:

 $\mu_{n,0}(x) = 1$, $\mu_{n,1}(x) = 0$, and the recurrence relation is

$$n\mu_{n,m+1}(x) = x \Big(\mu'_{n,m}(x) + m\mu_{n,m-1}(x) \Big) , m \ge 1;$$

$$B_{n,m}(x) = L_n((t-x)^m; x) = n \sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q_{n,k}(t)(t-x)^m dt$$

$$B_{n,0}(x) = 1, \ B_{n,1}(x) = \frac{1}{n} \qquad B_{n,2}(x) = \frac{2}{n} \left[x + \frac{1}{n} \right] \qquad \text{(ii) For every } x \in [0, \infty), B_{n,m}(x) = O\left(n^{-[(m+1)/2]}\right).$$

and there holds the recurrence relation:

$$nB_{n,m+1}(x) = xB'_{n,m}(x) + (m+1)B_{n,m}(x) + 2mxB_{n,m-1}(x)$$

Further, we have the following consequences of $B_{n,m}(x)$:

LEMMA 2.2.[3] For the function $B_{n,m}(x)$, we have (i) $B_{n,m}(x)$ is a polynomial in x of degree exactly

(ii) For every
$$x \in [0, \infty)$$
, $B_{--}(x) = O(n^{-[(m+1)/2]})$.

For $m \in \mathbb{N}^0$, the m-th order moment $T_{n,m}(x)$ for the operators (1.1) is defined as:

$$T_{n,m}(x) = M_n((t-x)^m; x) = n \sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q_{n,k+\nu}(t) (t-x)^m dt.$$

LEMMA 2.3. For the function $T_{n,m}(x)$, we have $T_{n,0}(x) = 1, T_{n,1}(x) = \frac{\nu+1}{n},$

$$T_{n,2}(x) = \frac{(\nu+1)(\nu+2)}{n^2} + \frac{2x}{n}$$
 and there holds the recurrence relation:

$$(2.2) nT_{n,m+1}(x) = xT'_{n,m}(x) + (m+\nu+1)T_{n,m}(x) + 2mxT_{n,m-1}(x).$$

Further, we have the following consequences of $T_{n,m}(x)$:

(i) $T_{n,m}(x)$ is a polynomial in x of degree exactly m;

(ii) For every
$$x \in [0, \infty), T_{n,m}(x) = O\left(n^{-\left[(m+1)/2\right]}\right).$$

Proof: By direct computations, we have

$$T_{n,0}(x) = 1$$
, $T_{n,1}(x) = \frac{v+1}{n}$ and

$$T_{n,2}(x) = \frac{(\nu+1)(\nu+2)}{n^2} + \frac{2}{n}x$$
. Next, we prove

(2.2). For x = 0 it clearly holds. For $x \in (0, \infty)$, we have

$$T'_{n,m}(x) = n \sum_{k=0}^{\infty} q'_{n,k}(x) \int_{0}^{\infty} q_{n,k+\nu}(t) (t-x)^{m} dt - m T_{n,m-1}(x)$$

Using the relations $xq'_{n,k}(x) = (k - nx) q_{n,k}(x)$, we get:

$$xT'_{n,m}(x) = n\sum_{k=0}^{\infty} (k - nx) q_{n,k}(x) \int_{0}^{\infty} q_{n,k+\nu}(t)(t - x)^{m} dt - mxT_{n,m-1}(x)$$

$$= n\sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} (k + r - nt) q_{n,k+\nu}(t)(t - x)^{m} dt + nT_{n,m+1}(x) - mT_{n,m-1}(x) - \nu xT_{n,m}(x)$$

$$= n\sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} t \, q'_{n,k+\nu}(t)(t - x)^{m} dt + nT_{n,m+1}(x) - mxT_{n,m-1}(x) - \nu T_{n,m}(x)$$

$$= n\sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q'_{n,k+\nu}(t)(t - x)^{m} dt + nT_{n,m+1}(x) - mxT_{n,m-1}(x) - \nu T_{n,m}(x)$$

Integrating by parts, we get

$$xT'_{n,m}(x) = nT_{n,m+1}(x) - (m+\nu+1)T_{n,m}(x) - 2mxT_{n,m-1}(x)$$

from which (2.2) is immediate.

From the values of $T_{n,0}(x)$ and $T_{n,1}(x)$, it is clear that the consequences (i) and (ii) holds for m=0 and m=1. By using (2.2) and the induction on m the proof of consequences (i) and (ii) follows, hence the details are omitted.

From the above lemma, we have

(2.3)
$$n \sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q_{n,k+\nu}(t) (t-x)^{2r} dt = T_{n,2r}(x)$$
$$= O(n^{-r})$$

LEMMA 2.4. [4] Let δ and γ be any two positive real numbers and $[a,b] \subset (0,\infty)$. Then, for any s>0, we have

 $+ nT_{n,m+1}(x) - vT_{n,m}(x) - mxT_{n,m-1}(x)$.

$$\left\| \int_{|t-x|\geq \delta} W_n(t,x) e^{\gamma t} dt \right\|_{C[a,b]} = O(n^{-s}).$$

Making use of Taylor's expansion, Schwarz inequality for integration and then for summation and (2.3), the lemma easily follows, hence the details are omitted.

LEMMA 2.5. [3] There exist polynomials $Q_{i,j,r}(x)$ independent of n and k such that

$$x^{r} D^{r} (q_{n,k}(x)) = \sum_{\substack{2i+j \le r \\ i,j \ge 0}} n^{i} (k - nx)^{j} Q_{i,j,r}(x) q_{n,k}(x), \text{ where } D = \frac{d}{dx}.$$

3. MAIN RES

we show derivative $M_n^{(r)}(f(t);x)$ is an approximation process for $f^{(r)}(x), r = 0,1, 2, \dots$

Theorem 3.1. If $r \in N$, $f \in C_{\alpha}[0,\infty)$ for some $\alpha > 0$ and $f^{(r)}$ exists at a point $x \in (0, \infty)$, then $\lim_{n\to\infty} M_n^{(r)}(f(t);x) = f^{(r)}(x).$

Further, if $f^{(r)}$ exists and is continuous on $(a-\eta,b+\eta) \subset (0,\infty), \ \eta > 0,$ then (3.1) holds uniformly in [a,b].

Proof: By Taylor's expansion of f, we have

$$f(t) = \sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} (t-x)^{i} + \mathcal{E}(t,x) (t-x)^{r},$$

where, $\mathcal{E}(t,x) \to 0$ as $t \to x$. Hence

$$M_n^{(r)}(f(t);x) = \sum_{i=0}^r \frac{f^{(i)}(x)}{i!} \int_0^\infty W_n^{(r)}(t,x)(t-x)^i dt + \int_0^\infty W_n^{(r)}(t,x) \mathcal{E}(t,x)(t-x)^r dt$$

:= $I_1 + I_2$.

Now, using Lemma 2.3 and induction we get that $M_n(t^m; x)$ is a polynomial in x of degree exactly m, for all $m \in N^0$. Further, we can write it as: m, for all $m \in N^0$. Further, we can write it as: (3.2) $M_n(t^m; x) = x^m + \frac{m(m+v)}{n} x^{m-1} + O(n^{-2})$. $= \frac{f^{(r)}(x)}{r!} (r!) = f^{(r)}(x) \text{ as } n \to \infty.$

$$I_{1} = \sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \sum_{j=0}^{i} {i \choose j} (-x)^{i-j} \int_{0}^{\infty} W_{n}^{(r)}(t,x) t^{j} dt$$
$$= \frac{f^{(r)}(x)}{r!} (r!) = f^{(r)}(x) \text{ as } n \to \infty.$$

Next, making use of Lemma 2.5 we have

$$\begin{aligned} \left| I_{2} \right| &\leq \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \frac{\left| Q_{i,j,r}(x) \right|}{x^{r}} n \sum_{k=0}^{\infty} q_{n,k}(x) \left| k - nx \right|^{j} \int_{0}^{\infty} q_{n,k+\nu}(t) \left| \varepsilon(t,x) \right| \left| t - x \right|^{r} dt \\ &\coloneqq I_{3}. \end{aligned}$$

Since $\mathcal{E}(t,x) \to 0$ as $t \to x$, then for a given Now, since $\varepsilon > 0$, there exists a $\delta > 0$ such that $|\varepsilon(t,x)| < \varepsilon$, whenever $0 < |t-x| < \delta$. For $|t-x| \ge \delta$, there exists a constant C > 0 such that $|\varepsilon(t,x)| < \varepsilon$, $\sup_{\substack{2i+j \le r \\ i,j \ge 0}} \frac{\left|Q_{i,j,r}(x)\right|}{x^r} := M(x) = C \ \forall \ x \in (0,\infty).$ $\left| \mathcal{E}(t,x)(t-x)^r \right| \leq Ce^{\alpha t}$.

Now, since
$$\sup_{\substack{2i+j \le r \\ i,j \ge 0}} \frac{\left| Q_{i,j,r}(x) \right|}{x^r} \coloneqq M(x) = C \ \forall x \in (0,\infty).$$
 Hence,

$$I_{3} \leq C \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} n \sum_{k=0}^{\infty} q_{n,k}(x) |k-nx|^{j} \left(\int_{|t-x| < \delta} q_{n,k+\nu}(t) \varepsilon |t-x|^{r} dt + \int_{|t-x| \geq \delta} q_{n,k+\nu}(t) |t-x|^{\gamma} dt \right)$$

 $:= I_{\Delta} + I_{5}$.

Now, applying Schwarz inequality for integration

and then for summation, (2.1) and (2.3) we are led to

$$I_{4} \leq \varepsilon C \sum_{\substack{2i+j \leq r \\ i \geq 0}} n^{i} n \sum_{k=0}^{\infty} q_{n,k}(x) |k - nx|^{j} \left(\int_{0}^{\infty} q_{n,k+\nu}(t) dt \right)^{1/2} \left(\int_{0}^{\infty} q_{n,k+\nu}(t) (t-x)^{2r} dt \right)^{1/2}$$

$$(\text{in view of } \int_{0}^{\infty} q_{n,k+\nu}(t) \ dt = \frac{1}{n})$$

$$\leq \varepsilon C \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \left(\sum_{k=0}^{\infty} q_{n,k}(x)(k-nx)^{2j} \right)^{1/2} \left(n \sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q_{n,k+\nu}(t)(t-x)^{2r} \ dt \right)^{1/2}$$

$$\leq \varepsilon C O(n^{-r/2}) \sum_{\substack{2i+j \leq r \\ i > 0}} n^{i} O(n^{j/2}) = \varepsilon O(1) = o(1) \text{ .(since } \varepsilon \text{ arbitrary })$$

Again using Schwarz inequality for integration and then for summation, in view of (2.1) and Lemma 2.3, we have

$$\begin{split} I_{5} &\leq C \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} n \sum_{k=0}^{\infty} q_{n,k}(x) \big| k - nx \big|^{j} \int_{|t-x| \geq \delta} q_{n,k+\nu}(t) e^{\alpha t} dt \\ &\leq C \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} n \sum_{k=0}^{\infty} q_{n,k}(x) \big| k - nx \big|^{j} \left(\int_{0}^{\infty} q_{n,k+\nu}(t) dt \right)^{1/2} \left(\int_{0}^{\infty} q_{n,k+\nu}(t) e^{2\alpha t} dt \right)^{1/2} \end{split}$$

$$\leq C \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \Biggl(\sum_{k=0}^{\infty} q_{n,k}(x) (k-nx)^{2j} \Biggr)^{1/2} \Biggl(n \sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q_{n,k+\nu}(t) e^{2\alpha t} dt \Biggr)^{1/2}$$

$$\leq O(n^{-s}) \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^i O(n^{j/2}) \text{ (for any } s > 0)$$

$$= O(n^{r/2-s}) = o(1) \text{ (for } s > r/2).$$

Hence $I_2 = o(1)$, combining the estimates of I_1 and I_2 , we obtain (3.1).

To prove the uniformity assertion, it is sufficient to remark that $\delta(\varepsilon)$ in the above proof can be chosen to be independent of $x \in [a,b]$, and also that the

other estimates hold uniformly in [a,b].

Next theorem is a Voronovaskaja-type asymptotic formula for the operators $M_n^{(r)}(f(t);x)$, $r=0,1,2,\ldots$

THEOREM 3.2. Let $f \in C_{\alpha}[0, \infty)$ for some $\alpha > 0$. If $f^{(r+2)}$ exists at a point $x \in (0, \infty)$, then,

(3.3)
$$\lim_{n \to \infty} n \left(M_n^{(r)}(f(t); x) - f^{(r)}(x) \right) = (r + \nu + 1) f^{(r+1)}(x) + x f^{(r+2)}(x).$$

Further, if $f^{(r+2)}$ exists and is continuous on the interval $(a-\eta,b+\eta)\subset(0,\infty), \eta>0$, then (3.3) holds uniformly on [a,b].

Proof: By the Taylor's expansion of f(t), we get

$$M_n^{(r)}(f(t);x) = \sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!} M_n^{(r)} \Big((t-x)^i; x \Big) + M_n^{(r)} \Big(\varepsilon(t,x)(t-x)^{r+2}; x \Big)$$

$$\coloneqq I_1 + I_2,$$

where $\mathcal{E}(t,x) \to 0$ as $t \to x$. By Lemma 2.3 and (3.2), we have

$$I_{1} = \sum_{i=r}^{r+2} \frac{f^{(i)}(x)}{i!} \sum_{j=r}^{i} {i \choose j} (-x)^{i-j} M_{n}^{(r)}(t^{j};x)$$

$$=\frac{f^{(r)}(x)}{r!}M_n^{(r)}(t^r;x)+\frac{f^{(r+1)}(x)}{(r+1)!}\Big((r+1)(-x)M_n^{(r)}(t^r;x)+M_n^{(r)}(t^{r+1};x)\Big)$$

$$+ \frac{f^{(r+2)}(x)}{(r+2)!} \left(\frac{(r+2)(r+1)}{2} x^2 M_n^{(r)}(t^r; x) + (r+2)(-x) M_n^{(r)}(t^{r+1}; x) + M_n^{(r)}(t^{r+2}; x) \right)$$

$$= f^{(r)}(x) + \frac{f^{(r+1)}(x)}{(r+1)!} \left((r+1)(-x)r! + (r+1)!x + \frac{(r+1)(r+\nu+1)}{n} r! \right)$$

$$+ \frac{f^{(r+2)}(x)}{(r+2)!} \left\{ \frac{(r+1)(r+2)}{2} x^2 r! + (r+2)(-x) \left((r+1)!x + \frac{(r+1)(r+2)}{n} r! \right) + \frac{(r+2)(r+2)}{n} r! \right\}$$

$$\left((r+2)! \frac{x^2}{2} + \frac{(r+2)(r+\nu+2)}{n} (r+1)! x \right) + O(n^{-2}).$$

Hence in order to prove (3.3) it sufficient to show that $nI_2 \to 0$ as $n \to \infty$, which follows on proceeding along the lines of proof of $I_2 \to 0$ as $n \to \infty$ in Theorem 3.1.

The uniformity assertion follows as in the proof of Theorem 3.1.

Finally, we present a theorem which gives an estimate of the degree of approximation by $M_n^{(r)}(.;x)$ for smooth functions in $C_\alpha[0,\infty)$.

THEOREM 3.3. Let $f \in C_{\alpha}[0,\infty)$ for some $\alpha > 0$ and $r \le q \le r+2$. If $f^{(q)}$ exists and it is continuous on $(a-\eta,b+\eta) \subset (0,\infty), \eta > 0$, then for sufficiently large n,

$$\left\| M_n^{(r)} \big(f(t); x \big) - f^{(r)}(x) \right\|_{C[a,b]} \le C_1 n^{-1} \sum_{i=r}^q \left\| f^{(i)} \right\|_{C[a,b]} + C_2 n^{-1/2} \omega_{f^{(q)}} \Big(n^{-1/2} \Big) + O(n^{-2})$$

where C_1, C_2 are constants independent of f and n, $\omega_f(\delta)$ is the modulus of continuity of f on

 $(a-\eta,b+\eta)$, and $\|.\|_{C[a,b]}$ denotes the sup-norm on [a,b].

Proof. By Taylor's expansion of f, we have

$$f(t) = \sum_{i=0}^{q} \frac{f^{(i)}(x)}{i!} (t-x)^{i} + \frac{f^{(q)}(\xi) - f^{(q)}(x)}{q!} (t-x)^{q} \chi(t) + h(t,x)(1-\chi(t)),$$

where ξ lies between t and x, and $\chi(t)$ is the characteristic function of the interval $(a-\eta,b+\eta)$. Now,

$$\begin{split} M_{n}^{(r)} \Big(f(t); x \Big) - f^{(r)}(x) &= \left(\sum_{i=0}^{q} \frac{f^{(i)}(x)}{i!} \int_{0}^{\infty} W_{n}^{(r)}(t, x) (t - x)^{i} \, dt - f^{(r)}(x) \right) \\ &+ \int_{0}^{\infty} W_{n}^{(r)}(t, x) \left\{ \frac{f^{(q)}(\xi) - f^{(q)}(x)}{q!} (t - x)^{q} \, \chi(t) \right\} dt + \int_{0}^{\infty} W_{n}^{(r)}(t, x) h(t, x) (1 - \chi(t)) \, dt \\ &:= I_{1} + I_{2} + I_{3} \, . \end{split}$$

By using Lemma 2.2 and (3.2), we get

$$I_{1} = \sum_{i=r}^{q} \frac{f^{(i)}(x)}{i!} \sum_{i=r}^{i} {i \choose j} (-x)^{i-j} \frac{d^{r}}{dx^{r}} \left(x^{j} + \frac{r(r+v)}{n} x^{j-1} + O(n^{-2}) \right) - f^{(r)}(x) .$$

Consequently,

$$||I_1||_{C[a,b]} \le C_1 n^{-1} \left(\sum_{i=r}^q ||f^{(i)}||_{C[a,b]} \right) + O(n^{-2}), \text{ uniformly on } [a,b].$$

To estimate I_2 we proceed as follows:

$$\begin{split} \left|I_{2}\right| &\leq \int\limits_{0}^{\infty} \left|W_{n}^{(r)}(t,x)\right| \left\{ \frac{\left|f^{(q)}(\xi) - f^{(q)}(x)\right|}{q!} \left|t - x\right|^{q} \chi(t) \right\} dt \\ &\leq \frac{\omega_{f^{(q)}}(\delta)}{q!} \int\limits_{0}^{\infty} \left|W_{n}^{(r)}(t,x)\right| \left(1 + \frac{\left|t - x\right|}{\delta}\right) \left|t - x\right|^{q} dt \\ &\leq \frac{\omega_{f^{(q)}}(\delta)}{q!} \left[n \sum_{k=0}^{\infty} \left|q_{n,k}^{(r)}(x)\right| \int\limits_{0}^{\infty} q_{n,k+\nu}(t) \left|\left|t - x\right|^{q} + \delta^{-1} \left|t - x\right|^{q+1}\right| dt \right], \qquad \delta > 0 . \end{split}$$

Now, for s = 0, 1, 2, ..., using Schwarz inequality for integration and then for summation, (2.1) and (2.3) we have

$$(3.4) n\sum_{k=0}^{\infty} q_{n,k}(x)|k-nx|^{j} \int_{0}^{\infty} q_{n,k+\nu}(t)|t-x|^{s} dt \leq n\sum_{k=0}^{\infty} q_{n,k}(x)|k-nx|^{j} \left\{ \left(\int_{0}^{\infty} q_{n,k+\nu}(t) dt \right)^{1/2} \right. \\ \times \left(\int_{0}^{\infty} q_{n,k+\nu}(t)(t-x)^{2s} dt \right)^{1/2} \right\}$$

$$\leq \left(\sum_{k=0}^{\infty} q_{n,k}(x)(k-nx)^{2j} \right)^{1/2} \left(n\sum_{k=0}^{\infty} q_{n,k}(x) \int_{0}^{\infty} q_{n,k+\nu}(t)(t-x)^{2s} dt \right)^{1/2}$$

= $O(n^{(j-s)/2})$, uniformly on [a,b].

Therefore, by Lemma 2.4 and (3.4), we get

$$(3.5) n\sum_{k=0}^{\infty} \left| q_{n,k}^{(r)}(x) \right|_{0}^{\infty} q_{n,k+\nu}(t) \left| t - x \right|^{s} dt \le n\sum_{k=0}^{\infty} \sum_{\substack{2i+j \le r \\ i,j \ge 0}} n^{i} \left| k - nx \right|^{j} \frac{\left| Q_{i,j,r}(x) \right|}{x^{r}} q_{n,k}(x)$$

$$\times \int_{0}^{\infty} q_{n,k+\nu}(t) \left| t - x \right|^{s} dt$$

$$\le \left(\sup_{\substack{2i+j \le r \\ i,j \ge 0}} \sup_{x \in [a,b]} \frac{\left| Q_{i,j,r}(x) \right|}{x^{r}} \right) \sum_{\substack{2i+j \le r \\ i,j \ge 0}} n^{i} \left(n\sum_{k=0}^{\infty} q_{n,k}(x) \left| k - nx \right|^{j} \int_{0}^{\infty} q_{n,k+\nu}(t) \left| t - x \right|^{s} dt \right)$$

$$= C \sum_{\substack{2i+j \le r \\ i,j \ge 0}} n^{i} O(n^{(j-s)/2}) = O(n^{(r-s)/2}) \text{ , uniformly on } [a,b] \text{ .}$$

(since
$$\sup_{\substack{2i+j \le r \\ i,j > 0}} \sup_{x \in [a,b]} \frac{\left| Q_{i,j,r}(x) \right|}{x^r} := M(x)$$
 but fixed)

Choosing $\delta = n^{-1/2}$ and applying (3.5), we obtain

$$||I_2||_{C[a,b]} \le \frac{\omega_{f^{(q)}}(n^{-1/2})}{\alpha!} [O(n^{(r-q)/2}) + n^{1/2}O(n^{(r-q-1)/2}) + O(n^{-m})], \text{ (for any } m > 0)$$

Journal of Basrah Researches ((Sciences)) Vol. 35, No.2, 15 April ((2009))

$$\leq C_2 \, n^{-(r-q)/2} \omega_{f^{(q)}} \left(n^{-1/2} \right).$$

Since $t \in [0, \infty) \setminus (a - \eta, b + \eta)$, we can choose $\delta > 0$ in such a way that $|t - x| \ge \delta$ for all $x \in [a, b]$. Thus, by Lemmas 2.3 and 2.4, we obtain

$$|I_3| \le \sum_{k=0}^{\infty} \sum_{\substack{2i+j \le r\\i,j \ge 0}} n^i |k-nx|^j \frac{|Q_{i,j,r}(x)|}{x^r} q_{n,k}(x) \int_{|t-x| \ge \delta} q_{n,k+\nu}(t) |h(t,x)| dt.$$

For $|t-x| \ge \delta$, we can find a constant C such that $|h(t,x)| \le Ce^{\alpha t}$. Hence, using Schwarz inequality for integration and then for summation ,(2.1), (2.3),

it easily follows that $I_3 = O(n^{-s})$ for any s > 0, uniformly on [a,b].

Combining the estimates of $I_1, I_2 I_3$, the required result is immediate.

REFERENCES

- [1] Z. Balczk: On approximation by modified Szãsz mirakyan operators, Glasnik Matematicki 303-319, 37(57) (2003).
- [2] Vijay Gupta, G.S. Servastava and A. Shahai: On simultaneous approximation by Szãsz-Beta operators, Soochow J. Math. 21,1-11, (1995).
- [3] H.S. Kasana, G. Prasad, P.N. Agrawal and A. Sahai, On modified Szãsz operators, Proc. Int. Conf. Math. Anal. And its Appl.Kuwait 29-41,(1985),Perogram Press, Oxford(1988).
- [4] H.S. Kasan, P.N. Agrawal and Vijay Gupta, Inverse and Saturtion theorems for linear combination of modified Baskakov operators, Approx. Theory Appl. 7,65-82,(1991).

- [5] G.Beylkin, L.Monzon: On approximation of functions by exponential sums, AppComput. Harmon . Anal. 17-48, 19(2005).
- [6] S.M. Mazhar and V. Totik, Approximation by modified Szãsz operators, Act. Sci. Math. 49,257-269,(1985).
- [7] S.Guo, Q.Qi and S.Yue: approximation for Baskakov - Kndtorovich - Bezier operators in the space $L_v[0,\infty)$, Taiwanese J.Math. , 161-177, 11(1) (2007).
- [8] E. Voronovskaja: Determination de la forme asymptotique d approximation des functions parles polynomes de S.N. Bernstein, C.R. Adad. Sci USSR 79-85 (1932)

حول تعميم مؤثر Szãsz من النمط مجموع - تكامل

في بحثنا هذا نقدم وندرس بعض النتائج المباشرة في التقريب المتعدد لتعميم مؤثر Szãsz من النمط مجموع - تكامل Voronovaskaja-type بداية , نثبت مبرهنة التقارب النقطى الأساسية ومن ثم نناقش صيغة فورونو فسكى . $M_n(f(t);x)$ (asymptotic formula) . وأخير ا نجد درجة التقريب بدلالة معيار الاستمرارية للدالة المستخدمة في التقريب .