
Mathematical Theory and Modeling                                       www.iiste.org   
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) 
Vol 6, No.3, 2016 
 

1 | P a g e 
www.iiste.org 
 

On The CW Complex Of The Complement Of A Hypersolvable 

Graphic Arrangement 
 

Assist. Prof. Dr. Hana' M. Ali   

 

Department of Mathematics , College of Science, University of Basrah  

College of Science, University of Basrah, Basrah, Iraq 

E-mail: hatamaj2004@gmail.com 

 

Abstract: 
This paper interested in studying a CW complex for the complement ����� of a hypersolvable 

graphic arrangement ��  that related to a hypersolvable graph �, by comparing it with the minimal CW 

complex for the complement of Jambu's-Papadima's deformed supersolvable arrangement ��. Motivated 

by our aim, a dimension of the first non-vanishing higher homotopy group for ����� was calculated and 

a fashion of the cohomological ring �∗������	� of the complement ����� was considered, just by 

using the hypersolvable partition analogue on �. Moreover, an algorithm to deform any hypersolvable 

graph into a supersolvable graph was stated.   
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Introduction: 
One of powerful mathematical tool for a wide range of applications is the graph theory. Our work are 

specialized on a very interesting class of graphs is the “hypersolvable class of graphs” which is firstly 

introduced by Papadima and Suciu in (2002, [12]) as a generalization of Stanly Supersolvable (triangulated 

graphs or rigid circuit graphs or chordal) class of graphs (1972, [1]). 

In (2012, [5]) Fadhil introduced a partition to a graph �, called a hypersolvable partition. In her M.Sc. 

thesis under my supervision, Fadhil produced the existence of a hypersolvable partition as a sufficient and 

necessary condition to a graph to be hypersolvable. The advantage of studying the hypersolvable partition 

analogue lies in the fact, it makes the computations of the cycles of � more easer and by using the duality; 

every graph �, defined a graphic arrangement ��, the analogue of the induced partition of ��  makes the 

computation of the NBC (no broken circuits) bases of ��  more easer. So, in this work the duality between 

the notions "cycle of � " and "circuit of  ��" had been used to introduce a fashion of the cohomological 

ring of complement of a hypersolvable arrangement,  �∗������� as a tensor module, since the set of all 

the NBC bases of ��  forms an explicit bases of the cohomological ring of �����, (we refer the reader 

to [11] as a general reference). This was achieved in section (3) by two parts. First, we recall the 

isomorphism between the chomological group of the complement ����� and The Orlik-Solomon algebra 
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∗���� of �� that had been studied firstly by Orlik and Solomon in (1980, [10]). Secondly, we used 

analogue defined in (2010, [3]) to embedding �∗������� as a submodule of the partition tensor module 

that related to the induced hypersolvable partition of �� , duo to [1].  

Randell in (2002, [14]), showed that ���� of any complex hyperplane arrangement has homotopy 

type of a minimal (finite type) CW-complex, i.e. the number of the �-cells is equal to the �th-Betti number 

�������� � ����∗�������. Accordingly, ����� has a minimal (finite type) CW-complex and we 

concern to study its structure by using the well known structure of its higher homotopy group due 

Papadima and Suciu in (2002, [16]).  

The hypersolvable class of arrangements was intoduced firstly by Jambu and Papadima in (1998, [8]) 

and (2002, [9]), as a generalization of the supersolvable (fiber-type) class. They defined a vertical 

deformation method which deformed the hypersolvable arrangement �  with �-singular blocks into 

supersolvable arrangement �� � ��� by one-parameter family of arrangements ������∈� in �� � �� � �ℓ, 
with preserving the lattice intersection pattern up to codimension two, ℓ���� � �� ⊆ �│	|�| # 3� 	%
ℓ����� and they proved � and �� have isomorphic fundamental groups. The class of hypersolvable 

arrangements contains supersolvable class of arrangements and the generic class of arrangements and many 

others. For a supersolvable arrangement (fiber-type) all the higher homotopy groups of ���� are 

vanished (1985, [6]). The first computation of non trivial higher homotopy groups of ���� of a generic 

arrangement was made by Hattori (1975, [7]). Papadima and Suciu in (2002, [12]), generalized Hattori's 

result to a hypersolvable arrangement and compute the first non vanishing higher homotopy group of 

����. They showed that the first non vanishing higher homotopy group of ���� has dimension; 

&������ � sup	��|*��∗������, �� ≡-./	� * 0�∗ 0�����1 , �1� 

where *��∗������, �� and * 0�∗ 0�����1 , �1 are the Poincaré polynomials of the cohomological 

rings ����  and �����  respectively. Ali in [1], showed a conjecture of &������  as;               

&������ � 234��||5�6����|=|7��Π�|}, where 5�6���� be the set of all �-NBC bases of � via 

the hypersolvable ordering and 7��Π� is the set of all �-sections of a hypersolvable partition Π. 

In section (1), some basic facts that we needed in this work was stated. Section (2), is devoted to 

compute the dimension &������� of the first non vanishing higher homotopy group of ����� for any 

hypersolvable graphic arrangement by using the properties of the hypersolvable partition on the graph � 

due [5]. Finally, the structure of the cohomological ring that given in section (3), �∗������� had been 

used to construct the second skeleton of the minimal CW complex of ����� in section (4) and to study 

the &��������9 skeleton of minimal CW complex of ����� in section (5). 

We mentioned that, the structure of the higher homotopy groups of ����� is due to [12] and the 

technique of constructing the skeletons of Minimal CW complex of ����� is due to [16], so it is to be 

expected these constructions without proof and for evedance see [12, 16].   

 

 



Mathematical Theory and Modeling                                       www.iiste.org   
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) 
Vol 6, No.3, 2016 
 

3 | P a g e 
www.iiste.org 
 

1. Basic Facts: 
This section briefly sketch the notion of a hypersolvable partition of a graph � due ([5], 2012), in order 

to use its structure to embedding the cohomological group of the complement of a graphic arrangement as a 

submodule of the partition tensor module. For this motivation, we will review some of the standard facts on 

the notions O-S algebra, NBC module, Partition module.  

1.1. Definition: [5] 

Let � � �:, Ԑ�	be a connected simple graph with a finite set of vertices, i.e. : � �<�, …	, <-�. A pair of 

partitions, Π� � �Π>, ΠԐ�  is said to be a hypersolvable partition of �  and denoted by Hp Π� , if           

Π> � �Π�> , … , Π-‒�> � and ΠԐ � �Π�Ԑ, … , ΠℓԐ� are partitions of : and Ԑ respectively, such that the following 

properties are satisfied: 

HP1: Π�> � �<�, <�� and Π�Ԑ � �@��, such that @� � A<�, <�B, i.e. Π�Ԑ is a singleton. 

HP2: For each  2	 # 	D	 # 	2‒ 1, the block ΠF> is a singleton. 

HP3: For each  2	 # 	�	 # 	ℓ, the block	Π�Ԑ satisfying the following properties: 

GHIJ: For each @KL , @KM 	 ∈ 	 Π�Ԑ 	∪ …	∪	Π�Ԑ , there is no edge @ ∈ Π�O�Ԑ 	∪ …	∪ 	ΠℓԐ  such that �@KL , @KM , @	� 
forms a set of edges of a triangle. 

GHIJJ: There exists a positive integer 1 P 2� # 2‒1, such that :� �	Π�> 	∪ …	∪	Π-Q>  is a subset of : 

that contains all the end points of the edges in Π�Ԑ 	∪ …	∪	Π�Ԑ, i.e �� � �:�, Π�Ԑ 	∪ …	∪ 	Π�Ԑ� forms a 

subgraph of �. Then, either; 

1. Π�Ԑ � �@� such that :� �	:�R�, 
or; 

2. Π�Ԑ � �@KL , … , @KSQ� , such that :�	\:�‒� � Π-QULO�> � Π-Q> � �<�  and for 1 # 	D	 # V� , @KW �
A<KW , <B , for some <KW ∈ Π�> 	∪ …	∪ 	Π-QUL> , where {<KL , … , <KSQ� ⊆ :�R� � Π� 	∪ …	∪	Π-QUL 
induces a complete subgraph of �. 

ℓ��� � ℓ � |ΠԐ|  is called the length of. For 1	 # 	�	 # 	ℓ , let V� � 	│Π�Ԑ│ and the vector              

V � �V�, … , Vℓ� is called the exponent vector of Π. Define the rank of  Π�Ԑ as; ��	Π�Ԑ � │:�│ X 1 and 

����� � ��	ΠℓԐ � 2 X 1. We will call the block Π�Ԑ singular block, if │:�R�│ � │:�│ and non-singular 

otherwise, i.e. Π�Ԑ is non-singular if │:�\:�R�│ � 1.  

A hypersolvable partition Π is said to be supersolvable if, and only if, ΠԐ has no singular block. 

We will call a hypersolvable partition Π�, generic if ℓ	 Y 2, the exponent vector  V � �1, … ,1� and 

every �-eadges of Ԑ cannot be an	�-cycle, 3 P � # 2 X 1.  

It is worth pointing out that; 

1. For 1	 # 	�	 # 	ℓ, the positive integer 2� needs not to be equal to � X 1 in general. 

2. ℓ	 Y 	2	‒ 	1 � �����. 
3. ℓ � 2	‒ 	1 if, and only if, Π is supersolvable. 

4. Π�Ԑ cannot be a singular block, since │:�│ � 3. 

5. For 3 # � # ℓ, if Π�Ԑ is a singular block, then Π�Ԑ is a singleton. 
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1.2. Theorem: [5] 

Let	� be a connected graph. Then � is hypersolvable if, and only if, � has a hypersolvable partition. A 

connected hypersolvable graph � is supersolvable if, and only if, � has a supersolvable partition. 

1.3. Lemma: (The complete property of  Z[Ԑ ) [5] 

Let � be a connected hypersolvable graph with a hypersolvable partition Π� � �Π> , ΠԐ�. For 2 # � #
ℓ, if @�, @� ∈ Π�Ԑ, then there exists a unique @ ∈ Π�Ԑ⋃…⋃Π�R�Ԑ  such that �@�, @�, @� forms a triangle.. 

1.4. Definition: [5] 

Let �  be a hypersolvable graph with hypersolvable partition. Define a hypersolvable order on 

�	associated to an Hp Π� � �Π>, ΠԐ� and denoted by ⊴, as follows: 

1. Put an arbitrary order on the vertices of  Π�>. 

2. If <K ∈ ΠK> and <F ∈ ΠF> such that; ̂ P D, put <K ⊴ <F. 
3. If @ ∈ ΠKԐ and @ʹ ∈ ΠFԐ such that; ̂ P D, put @ ⊴ @ʹ. 
4. If @, @′, @′′ ∈ Π�Ԑ, set@KL ⊴ @KM ⊴ @Ka 	⟺ @KL,KM ⊴ @KL,Ka ⊴ @KM,Ka, where, c@KL , @KM , @Kad � �@, @′, @′′�. 
1.5. Theorem: [15] 

A graph � � �:, Ԑ� is supersolvable if, and only if, there exists an ordering <�, <�, … , <- of its vertices 

such that if 1 # ^ P D P � # 2, such that A<K , <�B ∈ Ԑ and f<F , <�g ∈ Ԑ, then f<K , <Fg ∈ Ԑ. Equivalently, in 

the restriction of � to the vertices <�, … , <K the neighborhood of <K is a clique. 

1.6. Proposition: [5] 

Let  � � �:, Ԑ�  be a supersolvable graph with a supersolvable partition Π� � �Π> , ΠԐ� . Via a 

supersolvable ordering ⊴ on �, if A<K , <�B ∈ Ԑ and A<F , <�B ∈ Ԑ, then A<K , <FB ∈ Ԑ, where 1 # ^ P D P � #
2. 

1.7. Definition: [11] 

By a hyperplane h in a finite dimensional vector space : ≅ j- over a field j � k	or	�, we mean 

an affine subspace of dimension �dim: X 1 � 2 X 1� and an arrangement � is a finite collection of 

hyperplanes h  in : . The variety of �  is 5��� � ⋃ hq∈�  and its complement is ���� �
:\⋃ hq∈� . The intersection lattice is defined to be, r � r��� � csts � ⋂ hq∈v 	and	� ⊆ �d that 

ordered by reverse the inclusion, (i.e.  s # 		y	 ⟺ 	y ⊆ 	s, for s, y ∈ r���), and ranked by ���s� �
z{V^2�s� � dim�:� X dim�s�, for s ∈ r���. 

An arrangement ��  is said to be graphic arrangement if, there is a graph � � �:, Ԑ� such that the 

defining polynomial of �� is, |���� � ∏ �4K X 4F�AK,FB∈Ԑ .  

 We mention that; 

1. ������ � ����� � |:| X 1. 

2. If 	j � �:~ , Ԑ~� ⊆ �, then ����~� � 2 � |�| X 1 if, and only if, either |Ԑ~| � 2 or j is a triangle of 

�. 

3. Poincare polynomial of �� ,  *��� , �� � ���,X��, where ���,X�� is the chromatic function of �. 

Thus, for 1 # D # ℓ, if �F is a ��� Betti number of the Poincare polynomial	*��, ��, then �F � The 

number of colorings of  D vertices of  � with � colors.  

1.8. Proposition: [12] 

A graph � is hypersolvable if, and only if, the graphic arrangement �� is hypersolvable. 
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1.9. Proposition: [5] 

 A graph � is supersolvable if, and only if, the graphic arrangement ��  is supersolvable. A graph 

� � �:, Ԑ� is a generic graph if, and only if, its graphic arrangement ��  is generic.  

 

The important points to note here are that, if � � �:, Ԑ� is a hypersolvable graph, then ��  has a 

hypersolvable partition Π′ � �Π�, … , Πℓ� induced from the hypersolvable partition Π� � �Π> , Π��, as for 

1 # � # ℓ,  hKF ∈ Π� if, and only if, A^, DB ∈ Π��. Π′ is called the induced partition of Π�. 

1.10. Definition: [2] 

Let Π � �Π�, … , Πℓ� be a partition of an ℓ-arrangement �. 

1. A section 7 of  � is a subarrangement of � satisfied for each 1 # � # ℓ, either 7 ∩ Π� is empty or 

a singleton. By 7�Π� we denote the set of all sections of Π and the set 7��Π� denotes the set of all 

sections 7 of  Π with |7| � �, we call such sections of  Π, �-sections of Π. We will agree that the 

empty section ∅ℓ is a 0-sections of Π. 

2. The integer ℓ is called the length of  Π and denoted by ℓ�Π�. 
3. ���Π�� � ���⋂ hq∈�L∪…∪�Q �.  

4. Π is called independent if for every choice of hyperplanes h� ∈ Π�	 for 	1 # � # ℓ, the resulting ℓ 
hyperplanes are independent, i.e. ���h� ∩ …∩ hℓ� � ℓ. 

5. Let s ∈ r.	Let Π � �Π�, … , Πℓ� be a partition of �. Then the induced partition Πs	is a partition of 

�s, its blocks are the nonempty subsets Π� ∩ �s, 1 # � # ℓ. 
6. � is called nice, if Π is independent and if s ∈ r\�:�, then the induced partition Πs contains a 

block, which is a singleton. 

7. � is called nice arrangement if, it has a nice partition              Π � �Π�, … , Πℓ�. The vector of 

integers  V � �V�, . . , Vℓ� is said to be the exponent vector of �, if V� � |��|, 1 # � # ℓ. 
1.11. Definition: [2] 

1. A subarrangement 6	of � is said to be a circuit, if it is a minimal dependent subarrangement of �, 

i.e. 6\�h� is linearly independent, for any h ∈ 6, i.e. ���6� � │6│ X 1. 

2. Via a total ordering ⊴  on the hyperplanes of �, the corresponding broken circuit of a circuit 6 is 

6� � 6\�h�, where h is the smallest hyperplane in 6. If |6�| � �, then 6� is said to be �-broken 

circuit. The set of all � -broken circuits of �  will be denoted by �6����  and 

�6��� � ⋃ �6����ℓ��� . 

3. We call � ⊆ �, an NBC base of �, if it contains no broken circuit. Note that, such a set must be 

independent and we will write �-��� base for � if │�│ � � and we will agree that ∅ℓ is the 

0 -5�6  of � . By  5�6����  we denote the set of all � -5�6  bases of �  and 5�6��� �
⋃ 5�6����	ℓ��� . 

4. If 		s ∈ r���. Then the NBC base	� ⊆ ��, (i.e.	⋂ hq∈v � s) is said to be an 5�6 base of	s. 

5. If � is a factored arrangement with a factorization �. Due a total ordering ⊴ on the hyperplanes of �, 

define, &⊴��� � �34��|	5�6���� � 	 7�	����. We remarked that, 	1 # &⊴��� # ℓ.   

In view of definitions (1.10.) and (1.11), we remarked the following:  
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1. If V � �V�, . . , Vℓ� be the exponent vector of a nice partition Π, it is known that;  

*	��	, �� � ∏ �1 � V���ℓ��� 	� 1 � �V��. . �	Vℓ�� � �∑ ∑ VKLVKM	ℓKM�	KLO�	
ℓR�KL�� ���	 �⋯� V�	…Vℓ	�ℓ. 

2. Independent of our choice of an ordering ⊴ on the hyperplanes of �, It is known that, the ��� Betti 

number of the Poincare polynomial	*��, �� � ����� � |5�6����| . According to [1], for a 

hypersolvable arrangement �;  

����� � |5�6����| # ∑ ∑ …∑ VKLVKM…VKQ � |7��Π�|ℓKQ�	KQULO�
ℓR�O�KM�	KLO�

ℓR�KL�� , for 1 # � # ℓ.                

1.12. Definition: [11] 

Let j be any commutative ring and Let ⊴ be an arbitrary total order that defined on the hyperplanes 

of an ℓ-arrangement �. The Orlik-Solomon algebra (or for  simplicity O-S algebra) 
∗��� is defined to 

be the quotient of  the exterior j-algebra �∗ � ⋀ �⊕q∈� j@q���� , by the homogeneous ideal �∗��� is 

generated by the relations, ∑ �X1��R��F�� @q�L …@q��  …@q�Q , for all 1 # ^� P ⋯ P ^� # ¡  such that 

ch^1 , … h^�d is dependent subarrangement of �, i.e. (���hKL , …hKQ� P �) and the circumflex 	 ̂ means 

@q�W  is deleted. Define a j-linear mapping £∗�: �∗ → �∗ as; £0��@∅ℓ� � 0, £1��@h� � 1, for all h ∈ � 

and for 2 # � # ℓ, £�¦�@§� � ∑ �X1��R��F�� @q�L …@q��  …@q�Q , 6 � chKL , …hKQd. £∗�  is a differentiation on 

�∗  and the chain complex ��∗, £∗¦� : ⋯
¨Q©Lª
«¬­ ��

¨Qª«­��R�
¨QULª
«¬­ ⋯ ¨Mª«­ ��

¨Lª«­ ��
¨®ª«­ 0 , is called the exterior 

complex. 

1.13. Theorem: [11] 

The complex �¯∗���, £∗°� inherits a structure as acyclic chain complex from the exterior complex 

��∗, £∗¦�, where £∗
 � ±∗ ∘ £∗�  and ±∗: �∗ → ¯∗���  is the canonical chain map. The acyclic chain 

complex �¯∗���, £∗°� is called the O-S complex.  

1.14. Definition: [11] 

Let j be any commutative ring. The broken circuit module ���∗��� of the exterior j-algebra  

�∗ � ⋀ �⊕h∈� j@h��Y0 , is defined as; ���0��� � j  and for 1 # � # ℓ , �������  be the free  

j-module of �� with NBC (no broken circuit) monomials basis �@§|6 ∈ 5�6����� ⊆ ��, i.e.; 

������� �⊕6∈5�6���� j@6 and ���∗��� �⊕��0
ℓ �������. 

1.15.  Theorem: [11] 

The broken circuit  subcomplex ����∗���, £∗³v§� inherits a structure as acyclic chain complex from 

the exterior complex ��∗, £∗¦�, where £∗5�6 � £∗� ∘ ^∗ and ^∗: �∗ → ���∗��� is the inclusion chain map. 

Moreover, the restriction of the canonical chain map ±∗: �∗ → ¯∗��� of the broken circuit module 

���∗��� , is a chain isomorphism, defined as; for 1 # � # ℓ ,  ±��@6� � @6 � ����� � 36 ,           

6 ∈ 5�6����. Thus, the O-S algebra has the following structure as a free j-submodule of the exterior 

algebra: ̄ ∗��� �⊕��0
ℓ �⊕6∈5�6���� j36	�. 
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1.16. Definition: [11] 

Let Π � �Π�	, … , Πℓ� be a partition on an ℓ-arrangement � and let j be any commutative ring. A 

partition j-module is defined to be �Π�∗ � �Π1	�∗⊗ …⊗ �Πℓ�∗, where for 1 # � # ℓ, �Π��∗ is the 

free j-module with basis 1 and the elements of Π�. For each � � chKL , …hKQd ∈ 7�	�Π�, i.e. h^2 ∈ Π^2, 

1 # ^� P ⋯ P ^� # ℓ and 1 # 2 # �, define;µ� � 41 ⊗…⊗ 4ℓ ∈ �Π�∗ as; 

4D � ¶hD ^·	D � ^2	for	some	1 # 2 # �
1 ^·	D º ^2	for	all	1 # 2 # �  

We agree that each of µ∅ℓ � 1⊗…⊗ 1 and µ�  is homogeneous of degree � . We denoting the  

�th-homogeneous part of  �Π�∗  by �Π�� . Therefore, �Π�∗ �⊕��0
ℓ �Π�� �⊕��0

ℓ �⊕�∈7��Π� jµ�	� and 

�µv|� ∈ 7��Π�� forms a basis to the free j-module �Π�∗. Furthermore, �µ�q�|h ∈ Π�	� forms a basis to 

the free	j-module �Π�	�∗, 1 # � # ℓ. Define a j-linear mapping £∗Π: �Π�∗ → �Π�∗ as; £0Π 0µ�	�1 � 0,    

£1Π�µh� � 1, for all h ∈ � and for 2 # � # ℓ,  £�Π�µ�� � ∑ �X1��X1�D�1 µ� D, where � � chKL , …hKQd ∈

7��Π�, µ� � 41⨂…⨂4ℓ as given in (1.8), and µ� D � 41⨂…⨂h^D¿⨂…⨂4ℓ by means of h^D¿ � 1. £∗� is 

a differentiation on �Π�∗ and the chain complex ��Π�∗, £∗À� is called the partition complex; 

0 → �Π�ℓ
¨ℓÁ«­ �Π�ℓR�

¨ℓULÁ
«¬­⋯ ¨MÁ«­ �Π��

¨LÁ«­ �Π��
¨®Á«­ 0. 

1.17.  Definition: [11] 

For 1 # � # ℓ,	define the a map ÂÃ�: �µ�|� ∈ 7��Π�� → ¯∗��� , as Â��µ�� � 3� � @� � �����, 
� ∈ 7��Π�. Let Â�: �Π�� → ¯���� be the unique j-linear map that extend this assignment. Accordingly, 

there is a unique j-chain mapping Â∗: �Π�∗ → ¯∗��� between acyclic chain complexes. 

1.18. Theorem: [11] 

The chain map Â∗: �Π�∗ → ¯∗��� is a j-isomorphism between chain complexes if and only if the 

partition � is a Nice.  

The theorems (1.16.) and (1.19), afford a j -isomorphism,  �∗ � ±∗R� ∘ Â∗: �Π�∗ → ���∗��� 
between the partition complex and broken circuit complex.  

1.19. Theorem: [11]  

Let � be a complex ℓ-arrangement and let  ̄∗��� be its Orlik-Solomon algebra over the integer 

ring Ä. The map @q ↦ �1/2�√X1�Èq induces an isomorphism È∗: ¯∗��� → h∗�����, Ä� of graded 

Ä-algebras, where Èq � VÉq/Éq  is the deferential 1-form for h ∈ � and h � ker	�Éq�. 
1.20. Theorem: [3]  

For any commutative ring j
 
and for � Y 0; 

h������, j� ≅ h������, Ä�⨂Ë{��h�O������, Ä�, j�, 
where 	Ë{��h�O������, Ä�,j� � ker	�^�O�, 1~� from a free presentation; 
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0 → Ì�O� K
Q©L
«¬­ Í�O� → h�O������, Ä� → 0; 

 of h�O������, Ä� as generators Í�O� and relations Ì�O�. 
 

2. An algorithm to compute the dimension of the first non vanishing higher homotopy group of the 

complement of hypersolvable graphic arrangement 

The advantage of studying the hypersolvable class of graphs lies in the fact it includes enormous 

applications, including the class of supersolvable (triangulated or rigid circuit) graphs, the class of graphs 

with no triangles and many others.   

In view of definition (1.1.) and definition (1.4.), an algorithm to reorder the vertices and the edges of � 

by an order that preserve the hypersolvable structure of � was stated.  So, we will used this algorithm to 

compute &�������, the dimension of the first non vanishing higher homotopy group of ����� for any 

hypersolvable graphic arrangement that not supersolvable as follows:      

2.1. Construction: 

Let �	be a hypersolvable graph with hypersolvable partition Π� � �Π> , ΠԐ� and a hypersolvable 

ordering ⊴. Assume, ΠԐ  has � singular blocks say, ΠÎLÏ , … , ΠÎÐÏ , 2 P Ñ� # ⋯ # Ñ� # ℓ. Due  definition 

(1.1.) and definition (1.5.), we will reordering the vertices and the edges of � by the hypersolvable order that 

preserve Π� structure. Since � is not supersolvable, hence it has a �-circuit (cycle) with no chord, � Y 4. 

Every  �- circuit, forms a �-Polygon, � Y 4 and there is no mention about how many such circuit are there 

of �.  

2.2. Theorem: 

Suppose we have the conclusions of construction (2.1.). If; 

Ó � �6 ⊆ �|6	is	a	D X circuit	with	no	chord, D Y 4�; 
then � � |Ó|. In fact, &������� � z X 2, where; 

z��� � z � �^¡c|6|t	6 ∈ Ó�. 
Proof: First, we will prove � � |Ó|. So we need to verify that, the edges of a D-circuit with no chord, D Y 4, 

must be distributed among D different blocks of  ΠԐ.   

By contrary, assume there exists a D-circuit 6 with no chord and a block ΠKԐ of ΠԐ contains two edges 

of  6 say @� and @�. From the complete property of ΠKԐ (lemma (1.3.)), there exists an edge @ ∈ Π�Ԑ ∪ …∪
ΠKR�Ԑ , such that �@�, @�, @� is a triangle. This contradicts our assumption that 6 is a D-circuit with no chord. 

So, inductively the edges of 6 must be contained in D different blocks of ΠԐ and via the hypersolvable 

ordering the maximal edge @′ satisfied that there is no vertex added to :FR� , (i.e. :F � :FR� ). Thus, the 

block that contains @′ must be a singleton. Therefore, � � |Ó|. 

Secondly, if z��� � z � �^¡c|6|t	6 ∈ Ó�, we prove &������� � z X 2. Recall Ali conjecture of 

&������� from [1] as, &������� � ��||5�6�����|=|7��ΠÖ�|}, where 5�6����� be the set of all 

�-NBC bases of the hypersolvable grphic arrangement ��  via the hypersolvable ordering and 7��Π� is 

the set of all �-sections of the induced hypersolvable partition ΠÖ due Π�. According our first part proof, 
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�§  is a z -circuit of �� 	and  �§/�hKLKM		� ∈ 7×R��Π′�  is its broken circuit. Thus, |5�6×R�����| º
|7×R��ΠÖ�|. Therefore, ������� � ��||5�6�����| � |7��ΠÖ�|� � z X 2 . ∎ 

2.3. Deformation method: 

Suppose we have the conclusion of construction (2.1.). It is worth pointing out that, any hypersolvable 

graph can be deformed into a supersolvable graph either by adding edges or by deleting edges of every �- 

Polygon with no chord. So, we can easily use the hypersolvable partition ΠԐ and its exponent vector 

V � �V�, … , Vℓ� to complete the graph � either by just adding edges to deform � into a complete graph �- 

or by adding vertices and edges to deform � into a complete graph �ℓ by a simple comparing with; 

�Ï�vÙ� � ��A��, ��B�, �A��, �ÚB, A��, �ÚB�, … , �A��, �-B, … , A�-R�, �-B��; 
 that has exponent vector VvÙ � �1,2, … ,2 X 1�, or; 

�Ï�vℓ� � ��A��, ��B�, �A��, �ÚB, A��, �ÚB�, … , �A��, �ℓB, … , A�ℓR�, �ℓB��; 
that has exponent vector Vvℓ � �1,2, … , ℓ X 1�.  

For case (1): if VÛQ  is the number of the edges of ΠԐ that contain ��  as a vertex, then we will add 

�2 X 1� X VÛQ edges, for 1 P � # 2 in order to connect �� with the other  �2 X 1� X VÛQ vertices of : 

to produce a complete graph �-.   

For case (2), we will add ℓ X2	 vertices and  � X V� edges to the block Π�Ï , for 2 P � # ℓ in order to 

deform � into �ℓ.   

However, we can deform � into a hypersolvable graph �� by deleting every non-singular block of  ΠԐ, 
i.e. we will delete the � edges that related to the � singular blocks of ΠԐ. But by using this procedure, the 

resulting deformed arrangement  �� is either supersolvable or hypersolvable which is not supersolvable. So 

we need to iterate the process until we require our deformed supersolvable graph �Ü where � presents the 

repetition number of the process.  Via this deformation method, there is no vertex will be deleted. On the 

other hand, every �-cycle of � with no chord will be broken, for � Y 4. 

  

In the following we emphasis a special kind of graphs:  

2.4. Construction: 

Let � � �:, Ý�		 be a hypersolvable graph with hypersolvable partition Π� � �Π> , ΠԐ�  and a 

hypersolvable ordering ⊴. Assume, ΠԐ has just one singular block and it is the last one, i.e. ���Π-Ï � �
|:| � 2.  Since � is not supersolvable, hence it has a �- circuit (cycle) with no chord, 	� Y 4. In this case, 

there is just one 2- circuit say; 

6 � �c�KL , … , �KM�, �f�KL , �KMg, f�KM , �Kag, … , f�KÙUL , �KÙg, f�KL , �KÙg; 
with no chord and the edge f�KL , �KÙg of Π-Ï  is the maximal one of the �-circuit 6  via ⊴. Due the 

deformation method (2.3.), � can be deformed into a supersolvable graph by deleting the edge f�KL , �KÙg of 

the block Π-Ï . Put,  �� � �:� � :, Ý� � Ý X Π-Ï � to be the deformed supersolvable graph. Definitely, �� 
is a supersolvable graph. 

2.5. Corollary: 

Suppose we have the conclusions of construction (2.4.). Then &������� � 2 X 2. 

Proof: This is a direct result of theorem (2.2.). ∎ 
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2.6. Example: 

Every 2-geniric graph � � �:, Ý� is a graph with just one singular block is the block Π-Ï  and 

&������� � 2 X 2. For example, the graph in figure (1.) is a 5-geniric graph with &������� � 3 and 

figure (2.) shows its supersolvable deformed graph by deleting the last edge; 

                     

Figure 1. A 5-geniric graph    Figure 2. A defomed graph of 5-geniric graph  

2.7. Construction: 

Let � � �:, Ý�		 be a hypersolvable graph with hypersolvable partition Π� � �Π> , ΠԐ�  and a 

hypersolvable ordering ⊴. Assume, ΠԐ has just one singular block and it is Π-R�Ï , i.e. ���Π-R�Ï � � |:| X
1 � 2 X 1.  Thus, � has a �- circuit (cycle) with no chord, 	� Y 4. Actually, � has just one �- circuit 

say; 

6 � �c�KL , … , �KMd, �f�KL , �KMg, f�KM , �Kag, … , f�KQUL, �KQg, f�KL , �KQg; 
with no chord and the edge f�KL , �KQg of Π-R�Ï  is the maximal one of the �-circuit 6 via ⊴. For this case, 

we cannot guess that � can be deformed into a supersolvable graph by deleting just one edges and 

example (2.9.) demonstrate this goal. 

2.8. Corollary: 

Suppose we have the conclusions of construction (2.7.). Then &������� � � X 2. 

Proof: This is a direct result of theorem (2.2.). ∎ 

2.9. Example: 

Let � and �′ be the graphs shown in figure (3.) and figure (4.) respectively. then each one of them has  

&������� � 2.  

           

Figure 3. The graph �         Figure 4. The graph �′ 
Each one of them can be deformed easly by deleting edges into a supersolvabe graphs as shown in figure 

(5.) and figure (6.) respectively: 
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Figure 5. A deformed graph of �   Figure 6. A deformed graph of �′ 

 

2.10. Example: 

Let �, �′ and �′′ be the graphs shown in the figures (2.10.1.), (2.10.2.) and (2.10.3.) respectvely. The 

graph � has  &������� � 2 with � � 15 singular blocks of ΠԐ, the graph �Ö has &�����ß�� � 3 

with � � 31  singular block of ΠԐß  and the graph �ÖÖ  has &�����ßß�� � 3  with � � 27  singular 

blocks of ΠԐßß. Deduce that, in spit of, each one of the graphs	�, �′ and �′′ has no triangle, they are not 

generic. 

        
Figure 7. The graph �    Figure 8. The graph �′    Figure 9. The graph �′′ 

It is clear that, to deform any one of the graphs above by just deleting edges will be more complecated and 

it cannot be by applying the method for just one step.  

 

3. The cohomological ring of a hypersolvable graphic arrangement 

 
In this section we restricted, a construction of the cohomological ring of the complement of any 

hypersolvable arrangement discribed in [3], on the complement of any hypersolvable graphic arrangement  

by using the hypersolvable partition of a graph structure, as follows:  

  

3.1. Theorem: 

Let �  be a supersolvable graph with a supersolvable partition Π� � �Π> , ΠԐ� and a hypersolvable 

ordering ⊴ and let ΠÖ be its induced supersolvable partition on �� . Then 5�6���� � 7�Π′� and for 

1 # � # ����� � ℓ X 1; 

����∗�������� � ∑ ∑ …∑ VKLVKM …VKQℓR�KQ�KQULO�
ℓR�KM�KLO�

ℓR�R�KL�� . 

and the cohomological ring �∗������� can be determined by the following commutative diagram: 
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Proof: This is a direct result of theorem ((2.4.), [3]) and theorem (1.19.), where the j -chain map 

á∗: ���∗���� → �Π′�∗ is the unique j-isomorphism that extends the one to one correspondence between 

the bases of ���∗���� and  �Π′�∗; 
á∗: �@v|� ∈ 5�6���� � 7�Π′�� → �µv|� ∈ 7�Π′��, 

that defined as,  á∗�@v� � µv, � ∈ 7�Π′�.  ∎ 

 

3.2. Theorem: 

Let � be a hypersolvable graph with a hypersolvable partition Π� � �Π>, ΠԐ� and a hypersolvable 

ordering ⊴ such that ������ � 2 X 1 P ℓ, i.e. � is not supersolvable. Then, due theorem (2.2.); 

2 # &���� � z X 2 # 2 X 2; 

and  for 1 # � # z X 2; 

5�6����� � 7��Π′�, 5�6×R����� � 7×R��Π′�\7×R��Π′�⋂�6×R�����;  

and for z # � # 2 X 1, 5�6����� ⊂ 7��Π′�. The cohomological group �∗������� can be determined 

by the following commutative diagrams: 

 

 

 

 

 

 

 

 

 

 

and; 

 

 

 

 

0 →		 �ℓR�������� ¨ℓUL
ã 			«¬¬­		�ℓR�������� ¨ℓUM

ã
«¬­⋯ 		¨Mã			«¬¬­	 ��������� 		 		¨L

ã			«¬¬­	 ��������� 	 		¨®	
ã			«¬¬­ 0 

0 → ¯ℓR����� 		
			¨ℓULä 			«¬¬¬­	¯ℓR����� 		

¨ℓUMä
«¬­ ⋯ 		¨Mä			«¬­				 ¯����� 	

		¨Lä			«¬­		 ¯����� 	
		¨®	ä 			«¬¬­ 0 

±ℓR�R� ↓ 																		 ±ℓR�R� ↓ 																																 ±�R� ↓ 																 ±�R� ↓ 

		0 → ���ℓR�����
¨ℓULæ
«¬­���ℓR�����

¨ℓUMæ
«¬­ ⋯ ¨Mæ«­ ��������

¨Læ«­ ��������
¨®æ«­ 0 

					áℓR� ↓ 																	 áℓR� ↓ 																																	 á� ↓ 																				 á� ↓					

ÈℓR�R� ↓ 																				 ÈℓR�R� ↓ 																																	È�R� ↓ 																		È�R� ↓																														  

�×R��������		
			¨çULã 			«¬¬¬­		�×R��������			

¨çUMã
«¬­ ⋯ 		¨Mã			«¬­				 ��������� 		

		¨Lã			«¬­		 ���������		
		¨®	ã			«¬­ 0 

È×R�R� ↓ 																 È×R�R� ↓ 																														È�R� ↓ 																È�R� ↓																																		 

¯×R����� 		 			¨çUL
ä 		«¬¬¬­		¯×R����� 		¨çUM

ä
«¬­ ⋯ 		¨Mä 			«¬­				 ¯����� 	 		¨L

ä			«¬­		 ¯����� 	 		¨®	
ä 			«¬¬­ 0 

���×R�����
¨çULæ
«¬­���×R�����

¨çUMæ
«¬­ ⋯ ¨Mæ«­ ��������

¨Læ«­ ��������
¨®æ«­ 0 

						è×R� ↓ 															 á-R� ↓ 																																			 á� ↓ 																		 á� ↓																																 

					�Π′�×R� 	 	
	¨çULé 	«¬¬­				 �Π′�×R� 				

¨çUMé
«¬­	⋯ 		¨Mé			«¬­	 				�Π′�� 				

		¨Lé		«¬­				 	 �Π′�� 		
		¨®é			«¬­ 0																	 

±×R�R� ↓ 																 ±×R�R� ↓ 																															 ±�R� ↓ 															 ±�R� ↓																																	   
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Proof: According theorem ((2.5), [3]) and theorem (2.2.), our claim is proved, where the j-chain map 

è∗: ���∗���� → �Π′�∗ is the unique j-injective chain map that extends the one to one mapping that 

embedding the NBC basis of ���∗���� of the basis of �Π′�∗; 
è∗: �@v|� ∈ 5�6���� ⊆ 7�Π′�� → �µv|� ∈ 7�Π′��, 

that defined as,  è∗�@v� � µv , � ∈ 5�6����. Recall the definition of &���� � z X 2  of theorem 

(2.2.). In fact, for 1 # � # z X 2, since 5�6����� � 7��Π′�, hence, è� � á�: �������� → �Π′�� is an 

isomorphism. Moreover, for z X 1 # � # 2 X 1, the  homomorphism è� � á�: �������� → �Π′�� is a 

monomorphism since   5�6����� ⊂ 7��Π′�. ∎ 

3.3. Corollary: 

Let � be a hypersolvable graph with hypersolvable partition, Π� � �Π> , ΠԐ�  such that 2 Y 4 and it 

has an exponent vector V � �1,… ,1�, i.e. � has no triangle. Then we have the following: 

1. If |Ԑ| � ℓ � 2 X 1, then � is supersolvable and the cohomological ring has a structure as shown in 

theorem (3.1.) and for 1 # D # 2 X 1, �F��∗�������� � 0-R�F 1. 
2. If z��� � ℓ � 2 , then �  is generic have just one 2 -cycle and for 1 # D P 2 X 1 ,          

�F��∗�������� � t5�6F����t � 0-F 1  and �-R���∗�������� � 2 X 1 . Due theorem (3.2.), the 

cohomological ring �∗������� can be determined as the following commutative diagram; 

 

 

 

 

 

 

				0 →		 �-R��������		 			¨ÙUL
ã 			«¬¬¬¬­		�-R��������			¨ÙUM

ã
«¬¬­⋯ 		¨Mã			«¬­				 ���������		 		¨L

ã			«¬­		 ���������		 		¨®	
ã			«¬­ 0 

					0 → ¯-R����� 		 			¨ÙUL
ä 		«¬¬¬¬­		¯-R����� 		¨ÙUM

ä
«¬¬­⋯ 		¨Mä			«¬­				 ¯����� 	 		¨L

ä			«¬­		 ¯����� 	 		¨®	
ä 			«¬¬­ 0 

							0 → ���-R�����
¨ÙULæ
«¬¬­���-R�����

¨ÙUMæ
«¬¬­ ⋯ ¨Mæ«­ ��������

¨Læ«­ ��������
¨®æ«­ 0 

		è-R� ↓ 																		 á-R� ↓ 																																	 á� ↓ 														 á� ↓																								 

0	 → �Π′�-
	¨Ùé 	«¬­				�Π′�-R� 	 	

	¨ÙULé 	«¬¬¬­			�Π′�-R� 			
¨ÙUMé
«¬¬­	⋯ 		¨Mé			«¬­	 			�Π′�� 				

		¨Lé		«¬­				 	 �Π′�� 				
		¨®é			«¬­ 0	 

		È-R�R� ↓ 																		 È-R�R� ↓ 																														È�R� ↓ 										È�R� ↓																									   

					±-R�R� ↓ 																		 ±-R�R� ↓ 																														 ±�R� ↓ 											 ±�R� ↓																								   

0→		 �-R��������		 			¨ÙUL
ã 			«¬¬¬¬­	⋯ 		¨ç©Lã 			«¬¬¬­				 �×�������		 		¨ç	

ã			«¬­ 

È-R�R� ↓ 																															È×R� ↓																	 

0 → ¯-R����� 		 			¨ÙUL
ä 		«¬¬¬¬­		⋯ 		¨ç©Lä 			«¬¬¬­				 ¯×���� 	 		¨ç	

ä			«¬­ 

		±-R�R� ↓ 																																 ±×R� ↓																 

				0 → ���-R�����
		¨ÙULæ
«¬¬¬­	⋯	 			¨ç©L

æ
«¬¬­ ���×����

		¨çæ	«¬­ 

è-R� ↓ 																																			 è× ↓																 

0 → �Π′�ℓ
¨ℓé	«­… ¨Ù©Lé 	«¬¬­�ΠÖ�-

		¨Ùé 		«¬­		�ΠÖ�-R� 		 	
	¨ÙULé 		«¬¬¬­		⋯ 		¨ç©Lé 			«¬¬¬­			 	 �ΠÖ�× 		

		¨çé			«¬­ 
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3. If z��� # 2 X 1 P ℓ , then �  is neither supersolvable nor generic and for 1 # D # z��� X 2 , 

�F��∗�������� � t5�6F����t � 0-F 1  and �×R� 0�∗�������1 � � -×R�� X |�6×R�����| � � -×R�� X
|ê| , where ê � �6 ⊆ �|6	is	a	z X circuit	with	no	chord�  and the cohomological ring �∗������� 
can be determined as shown in theorem (3.2.). 

Proof: Due theorem (2.2.4) in [5] and theorem (2.2.), corollary claim is down. ∎ 

 

4. The second skeleton of the minimal CW complex for a hypersolvable graphic arrangements 
This section contains an algorithm to comput the second skeleton of the complement of a hypersolvable 

graphic arrangement by using a fashoin of its fundamental group as iterated semi direct product that 

presented in [4] by Cohen and Suciu. This algorithm technique has previously been introduced by Switzer 

in [16]. So we will agree this algorithm without proof and see [4, 12, 16] as evidences. In [3], Al-Taai and 

the author was firstly used this technique in order to give a topological interpretation for vanishing of 

higher homotopy groups of the complement of a hypersolvable arrangement when we deformed it by 

Jambu's and Papadima's deformation method, so for general case we refer the reader to [3].  

We start by reviewing the definitions and basic facts that we needed for the algorithm:    

4.1. Definition: [12] 

 A topological space s with the following properties: 

1. s is homotopy equivalent to a connected, finite type CW complex; 

2. The homology groups h∗�s� are torsion free, and; 

3. The cup product ∪:⋀h��s� → h∗�s�  is surjective; 

is said to be &-minimal, for some non-negative integer &, if it has the homotopy type of a CW complex ë 
such that the number of k -cells in ë is ���s� � ���h∗�s��, for all � # &. We called s minimal if it 

is &-minimal, for all &. 

4.2. Definition: [4]  

Assume each of ��, … , �ℓ be a group, and for 1 # ^ P D P ℓ, the action ÉFK: �K → 
ì���F� satisfying the 

compatibility conditions, É�F 0íFîQ
� �ï��1 � �É�F�íK��R�É�K �íF�É�F�íK�, for ̂ P D P �. Then, we define the iterated 

semi direct product of ��, … , �ℓ  with respect to the actions ÉFK to be the group; 

� � �ℓ ∝îℓ �ℓR� ∝îℓUL … ∝îM ��, 
 where for each 1 # � # ℓ, the partial iteration �� � �� ∝îQ ��R� is defined by the homomorphism    

É�: ��R� → 
ì����� with a restriction to ��; É�/�ñ: �ò → 
ì�����, 1 # & P � # ℓ. 

4.3. Definition: [11]  

Let �  be a complex central essential � -arrangement with complement ���� ⊆ �� . Define a 

stratification ó of �� as follows:  
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1. For each s ∈ r���, determine the arrangement �� � �h ∩ s|	h ∈ �\��	and	h ∩ s º ∅� of s, 

where �� � �h ∈ �|s ⊆ h� ⊆ �, and; 

2. Dfine �� to be the complement of �� of  s. 

Notice that the family �����∈ô��� forms a stratification of �� with top dimensional stratum ���� and 

each strata is a convex relatively open sets of s.  

We emphasize that, Switzer in [16] showed that, for any topological space s, one can construct a CW 

complex y (as showed in the following construction), and a weak homotopy equivalence ·: s → y and 

this construction is unique up to homotopy.  

4.4. Construction: 

Let � be a supersolvable graph with a supersolvable graphic ℓ � �2 X 1�-arrangement �� . Then 

��  has a maximal chain of modular elements say; 

�ℓ � s� P ⋯ P sℓ � ��0,… ,0�; 
which induces a supersolvable composition series; 

�h� � ��L ⊂ ⋯ ⊂ ��ℓ � ��… (4.4.1.) 

��  is a fiber type arrangement and the composition series (4.4.1.) creates a tower of fibrations; 

����� � ����ℓ�
òℓUL«¬­����ℓUL�

òℓUL«¬­…
òL→����L� � ��h� � �\�0�; 

with fiber Í�  of &� homeomorphic to � with V� points removed and the fundamental group of the 

complement � � ��������� asserts a fashion of iterated semi direct product of finitely generated groups 

� � Í/ℓ ∝îℓ Í/ℓUL ∝îℓUL … ∝îM Í/L, where Í/Q � 〈í�,�, … , í/Q,�〉  is free on V� generators. This creates 

a nice partition Π � �Π�, … , Πℓ� as follows; 

1. Put Π� � ��L and we will choose h ∈ ��L to be the minimal hyperplane via the fundamental group 

order that generats Í/L, and; 

2. For  2 # � # ℓ, put  Π� � ��Q\��QUL and oder the hyperplanes of Π� via the topological ordering 

that induced from the structure of Í/Q as free group with í�,� , … , í/Q,� generators  and preserve the 

fundamental group structure as; 

� � ÷íK,�; 1 # ^ # V�
1 # � # ℓ ùÉ�

F,ò�íK,�� � íF,òR�íK,�íF,ò; 1 # D # Vò
1 # & P � 	ú       (4.4.2.) 

where each É�F,ò � É��íF,ò� ∈ 
ì��Í/Q�. 

We will construct the second skeleton of a (finite type) minimal CW-complex structure of ����� as a 

j��, 1� space that given in ([21], section 6.44, p. 95) induced from the presentation (4.4.2.) above as 

follows: 

S1. Partitioned �ℓ by the stratification defined in definition (4.3.). 

S2. Choose any point in �����, say @� and put �����	� � �@�� to be the 0th-skeleton of �����. 
S3. For each h ∈ �� , fixed a 1-cell @q�  and an attaching mapping Âq� : £@q� → �@��  attached the 

boundaries of @q�  with @�. Take, �����	� � ⋁ 7�q∈� � ⋁ �⋁ 7ï�,Q�/Q
K�� �ℓ���  to be the 1st- skeleton of 

�����. Geometricly, for each h ∈ �� we go around the stratum �q and return into @� by @q� . 
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Clearly; ��������, @�� ≅ ���������, @�� ≅ 0, since ������ is path connected.  

S4. The following short exact sequence represents the presentation (4.4.2); 

0 → 〈�ü; 1 # ý # ������〉 þ→ 〈íK,�; 1 # ^ # V�
1 # � # ℓ 〉

î→ ��������, @�� → 0. 

 For each relation  �ü, choose a map Âü�: �7�, @�� → �������, @�� by meaning of ���ü�. Attach  

2-cells @ü� of ������ by the maps Âü� to create the second skeleton of ����� as the following 

disjoint union; 

�����	� � �����	�� @ü�
ÜM�������
ü����M

� �����	�� 7ü�
ÜM�������
ü����M

	 

Put ·ü�: �Ó�, 7�, ��� → �������, Âü��7��, @�� be the characteristic map of @ü�, for 1 # ý # ������. 
Thus,  ��������, @�� ≅ ���������, @�� and; 

������/������ � ⋁ 7ü�ÜM�������ü�� . 

4.5. Construction: 

Let � be a hypersolvable graph with a hypersolvable graphic �2 X 1�-arrangement ��  that not 

supersolvable, recall Jambu's and Papadima's 1-parameter family ������∈� of deformed supersolvable 

arrangements that introduced firstly in [12]. We follow a computation algorithm  given in [9] of �� � ��� 
for �� . The arrangement ��  is a supersolvable arrangements and it has with ��  the same Lattice 

intersection pattern to codimension two ℓ����� � �� ⊆ ��||�| # 3� and isomorphic fundematal groups, 

i.e. � � ��������� ≅ ��������� 	≅ ���������, @̃��, where ������ is the 2nd skeleton due [3]. Thus; 

� ≅ ��������� � Í/ℓ ∝îℓ Í/ℓUL ∝îℓUL … ∝îM Í/L; 
derived a hypersolvable partition Π � �Π�, … , Πℓ� by using the one to one coorespondance between ��  

and ��. Due this one to one coorespondance reordered the hyperplanes of ��  via the ordering we defined 

on the hyperplanes of �� as in construction (4.4.) that induced from the structure of the fundamental group. 

We will construct the second skeleton of ����� exactly as designed in construction (4.4.), the items 

(S1-S4).  

 

4.6. Remark: 

The advantage of studying the second skeleton of a hypersolvable graphic arrangement ��   lies in the 

fact that, if s ∈ r���� and ���s� � 2 , then either |��| � 2	or	3. In fact, for 1 # & P � # ℓ, the 

colinear relations �ü, for 1 # ý # ������, among the hyperplanes of � are associated to the triangles of 

Ý. So, there are just two kinds of relations as follows:   

1. If s � �hF,ò, hK,�� , then, the action É�F,ò�íK,�� � íK,�  is trivial and the relation will be a usual 

commutator relation, i.e. íK,�R�íF,òR�íK,�íF,ò � 0, i.e. we have a torus relation as the following figure:  
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Figure 10. A trivial action . íK,�R�íF,òR�íK,�íF,ò � 0 

 

For example, if |��� 	� � �4� X 4���4� X 4Ú��4Ú X 4��, be the defining polynomial of an arrangement 

��  , then ��  is supersolvable graphic arrangement with fundamental group of its complement  is; 

�������, @�� � 〈í�, í�, íÚ|
í� � í�R�í�í�
íÚ � í�R�íÚí�
íÚ � í�R�íÚí�

〉. 

Then, it has second skeleton as; 

 

Figure 11. A second skeleton of �� 	, |��� 	� � �4� X 4���4� X 4Ú��4Ú X 4�� 
2. If s � �h�,ò, h�,� , hÚ,��, we have the following relations and attaching mapping via those relations; 

 

 

 
Figure 12. a. Part one of the action, í�,òí�,�íÚ,� � íÚ,�í�,òí�,�   
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Figure 12. b. Part two of the action, í�,�íÚ,�í�,ò � íÚ,�í�,òí�,� 

   

      
     Figure 12. c. The second skeleton represented the action í�,òí�,�íÚ,� � íÚ,�í�,òí�,� � í�,�íÚ,�í�,ò       

The second skeleton given in figure (4.6.5.), is the Minimal CW complex for the supersolvable graphic 

arrangement ��  that related to a graph given in figure (4.6.6.) has defining polynomial,           

|���� � �4� X 4���4� X 4Ú��4� X 4Ú�, and its complement is homotopic to �7�⋁7�� � 7�. 

 
Figure 13. 

We mentioned here that, due [13], the relation in figure (4.4.7) is selfed contained in figure (4.5.6.), so there 

are no attaching cell related to this relation that correspondence to a broken circuit of ��  via fandamental 

group order. 
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Figure 14. Part three of the action, í�,òí�,�íÚ,� � í�,�í�,òíÚ,�     

By following the fundamental group structure of the complement of any graphic arrangement and the 

type of the actions among the different blocks of Π that we discussed above, the second skeleton has a 

regular construction. We leave it to the reader to construct the second skeleton for the section (2) examples 

as we shown in the following example:      

5.2. Example: 

Let �� be a generic graphic ℓ-arrangement. Then; 

|���� � �4� X 4���4� X 4Ú��4Ú X 4��… �4ℓR� X 4ℓ��4ℓ X 4��, 
Be its defining polynomial. The fundamental group of its complement ����� has a structure as; 

��������, @�� � 〈í�, í�, . . , íℓ| í� � íòR�í�íò, 1 # & P � # ℓ〉. 
Due to [9], the deformed arrangement �� of �ℓO� has a defining polynomial; 

|���� � �4� X 4���4� X 4Ú��4Ú X 4��… �4ℓR� X 4ℓR���4ℓR� X 4� � 4ℓO��. 
And by applying construction (4.5.), we will construct the second skeleton of ����� as follows: 

S1. Partitioned �ℓ by the stratification defined in definition (4.3.). 

S2. Choose any point in �����, say @� and put �����	� � �@�� to be the 0th-skeleton of �����. 
S3. For each h ∈ �� , fixed a 1-cell @q�  and an attaching mapping Âq� : £@q� → �@��  attached the 

boundaries of @q�  with @�. Take, �����	� � ⋁ 7�q∈� � ⋁ �⋁ 7ï�,Q�/Q
K�� �ℓ���  to be the 1st- skeleton of 

�����.  

S4. The following short exact sequence represents the presentation (4.4.2); 

0 → 〈í� � íòR�í�íò, 1 # & P � # ℓ〉
þ→ 〈í�, í�, . . , íℓ〉

î→ ��������, @�� → 0. 

 For each relation í� � íòR�í�íò, 1 # & P � # ℓ, choose a map Âò,�� : �7�, @�� → �������, @�� as 

shown in figure (4.6.1.). the number of the 2-cells @ò,��  of ������ that attached by maps Âò,��  to 

create the second skeleton of �����, is 0ℓ21 and the second skeleton will be; 
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�����	� � �����	�� � @ò,��
ℓ

��òO�

ℓR�

ò��
Âò,��

� �����	�� � 7ò,��
ℓ

��òO�

ℓR�

ò��
Âò,��

	 

Thus, ��������, @�� ≅ ���������, @�� ≅ Äℓ. Actually, ������/������ � ⋁ ⋁ 7ò,��ℓ��òO�ℓR�ò�� . 

 

5. The 	�� skeleton of the minimal CW complex for a hypersolvable graphic arrangements 
This section is devoted to introduce an algorithm to compute the higher skeletons of theminimal CW 

complex of the  complement of a hypersolvable graphic arrangement by using a computation of a 

presentation of first non-vanishing higher homotopy group introduced in [12] by Papadima and Suciu.   

5.1. Construction:  

For a supersolvable graphic ℓ � �2 X 1� -arrangement ��, recall construction (4.4.) for the second 

skeleton of �����. We will complete the Minimal CW complex for ����� by using induction to attach 

higher cells due Switzer prosedure [16], as follows; 

For 
 # � # �, if; 

0 → 〈�ü�; 1 # ý # ��O�����〉 þ→ 〈í��; 1 # 
 # 2��〉 î→ ��������, @�� ≅ 0 → 0. 

be the presentation short exact sequence of the ��9-higher homotopy group ��������, @�� such that the 

set of generatores cí��d���-Q  generats ���������, @�� ≇ 0, where  2� represent the number of higher 

�-holes of ������  and for 1 # ý # ��O�����, let Âü�O�: �7�, ��� → �������, @�� be the attachin 

mapping representing the relation ���ü��  and attach �� � 1� -cell @ü�O�  by means of Âü�O� . But,  

��������, @�� ≅ 0 , so �: 〈�ü�; 1 # ý # ��O�����〉 → 〈í��; 1 # 
 # 2��〉  is an isomorphism. Thus, 

2� � ��O�����=∑ ∑ …∑ VKLVKM…VKQℓKQ©L�	KQO�
ℓR�KM�	KLO�

ℓR�O�KL�� . Put; 

											�����	�O� � �����	�� @ü�O�
ÜQ©L�������
ü����Q©L

� ����	�� 7ü�O�
ÜQO��������
ü����Q©L

 

In the long exact homotopy sequence;  

… → ��O��������O�, ������, @��
/Q©L«¬­	���������, @�� → 		 ���������O�, @�� → ⋯; 

we have V�O� is an epimorphism. Therefore, ���������O�, @�� is trivial and �K�������O�, @�� ≅
�K�������, @�� for 0 # ^ P �. 

��������, @�� � ���������O�, @�� � ¶���������, @��; ^·	� � 1
0; ^·	� º 1 

Finally, take the minimal CW complex for �����, ∐ ������ℓ���  with the weak toplogty.  

5.2.  Construction:  

For the second skeleton of the minimal CW complex of a hypersolvable graphic �2 X 1�-arrangement 

that is not supersolvable, recall construction (4.5.). It is known that, ����� is a &-minimal CW complex, 

where, & � &���� � 234c�t������ � ∑ ∑ …∑ VKLVKM …VKQℓKQ�KQULO�
ℓR�O�KM�KLO�

ℓR�KL�� d. 



Mathematical Theory and Modeling                                       www.iiste.org   
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) 
Vol 6, No.3, 2016 
 

21 | P a g e 
www.iiste.org 
 

From theorem (2.2.), & � z X 2. Accordingly, our aim will achived by three parts.  

First, embed ��  of �ℓ  by the arrangement, ��⨁�ℓR� � �h⨁�ℓR�t	h ∈ ��� , which its 

complement ����⨁�ℓR�� is a subspace of the complement ����� of Jambue's-Papadima's deformed 

arrangement of ��.  Deduce that, ����� ≅ ����� � ��0, … ,0�� is a strong deformation retract of  

���⨁�ℓR�� . It is to be expected that ������,������  is a topological pair, since, ����� ≃
����⨁�ℓR�� ⊆ �����. 

Secondly, recall the exact homotopy sequence of higher homotopy groups of the topological pair 

������,������ from ([16], p. 38); 

⋯ → ��������, @�� KQ→��������, @�� �Q→��������, �����, @��
/Q«­	��R�������, @�� KQUL«¬­… /L→	��������, @��	 K®→��������, @�� �®→��������,�����, @�� /®→0	 

where @� can be chosen to be any point of ����� � ��0, … ,0��. Papadima and Suciu in [16], proved that 

�����  and �����  have the same �z X 2��9 -skeletons, (i.e. ��������, �����, @�� � 0  , for 

0 # � # z X 2 )  and they have isomorphic ��9 -higher homotopy groups, ��������, @��  and 

��������, @��, for 0 # � # z X 3 P �. Recall construction (5.1.) as a minimal CW complex of ����� 
and recall construction (4.5.) as a minimal 2nd skeleton of �����. For 0 # � # z X 3, the isomorphisms,          

^�: ��������, @�� → ��������, @��  and µ�: ��������, @�� → ��������,�����, @��  induced cellular 

homotopy equivalences between �z X 2��9 -skeletons of �����  and ����� , ^�: ������ → ������  

and µ�: ������ → ������. 

Thirdly, complete the z X 2-minimal CW complex for ����� by using induction to attach higher 

cells due Switzer prosedure [16], as follows:  

For 
 P � # � X I,   

The homotopy equivalence µ�: ������ → ������, iduced an isomorphism; 

µ�: ��������� , @�� → ���������, @��. 
Due construction (5.1.), we have; 

	0 → 〈�ü�; 1 # ý # ��O�����〉
þ→ 〈í��; 1 # 
 # 2��〉

î→ ��������, @�� ≅ 0 → 0 

   	µ� ↓↑ 	 ^� 

 ��������, @�� 
Thus, the set  cµ��í���d���-Q����  generates the homotopy group ���������, @��  and for 1 # ý #
��O����� , if Âü�O�: �7�, ��� → �������, @��   be the attaching mapping that representing ���ü��  of 

���������, @��, put µ�Âü�: �7�, ��� → �������, @�� to be the attaching mapping that represents the 

relation µ����ü�� of ���������, @��. Attach �� � 1�-cells @ü�O� by means of µ�Âü�O�, for 1 # ý #
��O����.  Put; 

�����	�O� � �����	�∐ @ü�O�ÜQ©L������ü��
òQ��Q©L

� �����	�∐ 7ü�O�ÜQO�������
òQ��Q©L . 

For � � � X 
: 

It is known that, �×R�������×R�, @�� � �×R�������, @�� ≇ 0, i.e. it is not trivial and [12] includes a 
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presentation of it as a Ä�-module, say; 

0 → 〈�ü×R�; 1 # ý # �×R�����〉 þ→ 〈í�×R�; 1 # 
 # 2×R��〉 î→ �×R�������, @�� → 0. 
 

From the following portion;  

�×R�������×R�, �����×R�, @�� /çUL«¬­	�×R�������×R�, @�� KçUM
ß
«¬­�×R�������, @�� ≇ 0 

 ^×R� ↓↑ 	 µ×R� 
 �×R�������×R�, @�� 
 

the induced homomorphism, µ×R�: �×R�������×R�, @�� → �×R�������×R�, @�� is an isomorphism and  

^×R�Ö : �×R�������×R�, @�� → �×R�������, @��  is an epimorphism, since they have the same set of 

generatores �í�×R�����-çUM , where 2×R� � ∑ ∑ …∑ VKLVKM …VKQℓKQ�KQULO�
ℓR×O�KM�KLO�

ℓR×O�KL�� � �×R�����  represent 

the number of higher �z X 2�-holes of �����×R�  and for 1 # ý # �×R�����, let Âü×R�: �7×R�, ��� →
������×R�, @�� be the attachin mapping representing the relation ���ü×R�� and attach �z X 1�-cell @ü×R� 
by means of Âü×R�. It is worth pointing out that the the number of attaching �z X 1�-cells is not enough to 

kill of all the higher �z X 2�-holes. Put; 

�����	×R� � �����	×R�� @ü×R�
ÜçUL�������
ü����çUL

� �����	×R�� 7ü×R�
ÜçUL�������
ü����çUL

 

with the weak toplogty. Therefore, for 0 # � # z X 2. 

��������, @�� � ���������O�, @�� � � ���������, @��; ^·	� � 1
0;

�×R�������×R�, @��;
^·	� � 0	{�	1 # � # z X 3

^·	� � z X 2
 

5.3. Example: 

Recall example (4.7.) of a generic graphic ℓ-arrangement ��  and its deformed arrangement �� of 

�ℓO�. One can deduce that, �� has the same lattice with the Boolen arrangement with ℓ � 1 hyperplanes.  

By applying construction (5.2.), &������� � ℓ-skeleton of ����� can be considered and suppose 

�����ℓR� be its ℓ X 1-skeleton. Recall the portion;  

�ℓ������ℓ, �����ℓR�, @��
/ℓ→	�ℓR�������ℓR�, @��

KℓULß
«¬­�ℓR�������, @�� ≇ 0 

 ^ℓR� ↓↑ 	 µℓR� 
 �ℓR�������ℓR�, @�� 
 

The induced homomorphism, µℓR�: �ℓR�������ℓR�, @�� → �ℓR�������ℓR�, @��is an isomorphism and  

^ℓR�Ö : �ℓR�������ℓR�, @�� → �ℓR�������, @��  is an epimorphism. Thus, �ℓR�������ℓR�, @��  and 

�ℓR�������ℓR�, @�� have the same set of generatores say cí�ℓR�d���-ℓUL , where                     
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2ℓR� � 0ℓ � 1ℓ 1 � ℓ � 1 � �ℓ����  represent the number of higher �ℓ X 1� -holes of �����ℓR�  and 

�ℓ���� � ℓ X 1, represents the number of attaching �ℓ�-cells which is not enough to kill of all the higher 

�ℓ X 1�-holes.  

6. Conclusions: 
In this paper; 

1. The author compute the dimension of the first non vanishing higher homotopy group of the complement 

for any hypersolvable graphic arrangement that not supersolvable, and related to a hypersolvable graph. 

It is equal to the dimension of the smallest cycle of the graph with no chord. 

2. An algorithm to deform a hypersolvable graph that not supersolvable into a supersolvable graph was 

stated.  

3. A construction of the cohomological ring of the complement for any hypersolvable graphic arrangemen 

was considered.  

4. A construction to compute the minimal CW complex of of the complement for any hypersolvable 

graphic arrangement was described. 
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