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Abstract:

This paper interested in studying a CW complex tfe complementM (A;) of a hypersolvable
graphic arrangementl,; that related to a hypersolvable graghby comparing it with the minimal CW
complex for the complement of Jambu's-Papadimdsrmed supersolvable arrangemeAt Motivated
by our aim, a dimension of the first non-vanishimgher homotopy group foM (A;) was calculated and
a fashion of the cohomological rind*(M(A;)) of the complemeniM(A;) was considered, just by
using the hypersolvable partition analogue ®@nMoreover, an algorithm to deform any hypersoleabl
graph into a supersolvable graph was stated.
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Introduction:

One of powerful mathematical tool for a wide ramdeapplications is the graph theory. Our work are
specialized on a very interesting class of graghthé “hypersolvable class of graphs” which istffirs
introduced by Papadima and Suciu in (2002, [12p generalization of Stanly Supersolvable (triaated
graphs or rigid circuit graphs or chordal) clasg@phs (1972, [1]).

In (2012, [5]) Fadhil introduced a partition to eagh G, called a hypersolvable partition. In her M.Sc.
thesis under my supervision, Fadhil produced thstexce of a hypersolvable partition as a sufficemd
necessary condition to a graph to be hypersolvdliie.advantage of studying the hypersolvable jpamtit
analogue lies in the fact, it makes the computatimfithe cycles of; more easer and by using the duality;
every graphG, defined a graphic arrangemeny;, the analogue of the induced partition.4f, makes the
computation of the NBC (no broken circuits) basksdg more easer. So, in this work the duality between
the notions "cycle of; " and "circuit of A;" had been used to introduce a fashion of the cathagical
ring of complement of a hypersolvable arrangemeﬁf,(M(cﬁlG)) as a tensor module, since the set of all
the NBC bases ofd; forms an explicit bases of the cohomological rifigM (A;), (we refer the reader
to [11] as a general reference). This was achigmedection (3) by two parts. First, we recall the
isomorphism between the chomological group of hagementM (A;) and The Orlik-Solomon algebra
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A, (Ag) of A that had been studied firstly by Orlik and Solomion(1980, [10]). Secondly, we used
analogue defined in (2010, [3]) to embeddng(M(cAG)) as a submodule of the partition tensor module
that related to the induced hypersolvable partitibed;, duo to [1].

Randell in (2002, [14]), showed th# (A) of any complex hyperplane arrangement has homotopy
type of a minimal (finite type) CW-complex, i.eethumber of thek-cells is equal to the&k'"-Betti number
b (M(A)) = rk(H*(M(A))). Accordingly, M(Ag) has a minimal (finite type) CW-complex and we
concern to study its structure by using the welbwn structure of its higher homotopy group due
Papadima and Suciu in (2002, [16]).

The hypersolvable class of arrangements was inttificstly by Jambu and Papadima in (1998, [8])
and (2002, [9]), as a generalization of the supeabde (fiber-type) class. They defined a vertical
deformation method which deformed the hypersolvadleangementA with s-singular blocks into
supersolvable arrangemesi = A, by one-parameter family of arrangemefitd, },cc in C” x C° = C?,
with preserving the lattice intersection pattern topcodimension two¢,(A) ={B < c/Z| |B| <3} =
£,(A) and they provedA and A have isomorphic fundamental groups. The class ypetsolvable
arrangements contains supersolvable class of anaggts and the generic class of arrangements amg ma
others. For a supersolvable arrangement (fibentyae the higher homotopy groups @f(A) are
vanished (1985, [6]). The first computation of rtamial higher homotopy groups aff(A) of a generic
arrangement was made by Hattori (1975, [7]). Papadand Suciu in (2002, [12]), generalized Hattori's
result to a hypersolvable arrangement and comphdefitst non vanishing higher homotopy group of
M(A). They showed that the first non vanishing high@nbtopy group ofM (A) has dimension;

p(M(A)) = sup(k|P(H*(M(A)),5) Zmoar P (H* (M(A)), s )}

where P(H*(M(A)),s) andP(H* (M(ﬂ)),s) are the Poincaré polynomials of the cohomological

rings M(A) and M(A) respectively. Ali in [1], showed a conjecture qf(M(cfl)) as;
p(M(A)) = max{k|INBC,(A)|=IS, (I}, where NBC,(A) be the set of alk-NBC bases ofA via
the hypersolvable ordering argl (I1) is the set of allk-sections of a hypersolvable partitidh
In section (1), some basic facts that we needethi;mwork was stated. Section (2), is devoted to

compute the dimensiop(M(ﬂG)) of the first non vanishing higher homotopy grodpM(A;) for any
hypersolvable graphic arrangement by using the gotigs of the hypersolvable partition on the graph
due [5]. Finally, the structure of the cohomologidag that given in section (S)H*(M(C/ZG)) had been
used to construct the second skeleton of the min@ié complex of M(A;) in section (4) and to study

the p(M(c/lG))th skeleton of minimal CW complex a¥f(A;) in section (5).

We mentioned that, the structure of the higher Homp groups ofM(A;) is due to [12] and the
technique of constructing the skeletons of Minirg&/ complex of M(A,;) is due to [16], so it is to be
expected these constructions without proof ané¥edance see [12, 16].
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1. Basic Facts:

This section briefly sketch the notion of a hypérable partition of a grapl& due ([5], 2012), in order
to use its structure to embedding the cohomologjoalip of the complement of a graphic arrangemer a
submodule of the patrtition tensor module. For thiivation, we will review some of the standardt$aon
the notions O-S algebra, NBC module, Partition niedu
1.1. Definition: [5]

Let G = (V, €) be a connected simple graph with a finite set ofises, i.e.V = {v,, ... ,u,,}. A pair of
partitions, I1¢ = (11", 11%) is said to be éypersolvable partition of G and denoted by H@I®, if
nv = @y,..,ns_,) andM® = (1§, ..., M%) are partitions ol and € respectively, such that the following
properties are satisfied:

HPy: IV = {vy,v,} and 1§ = {e;}, such thate, = [v,,v,], i.e. ¥ is a singleton.

HP,: Foreach2 < j < m-1, the bIockHJ‘-’ is a singleton.

HP;: Foreach 2 < k < ¢, the blocKII¢ satisfying the following properties:

HPsi: For eache;,e;, € II¥ U .. U I, there is no edge € I1§,; U .. U I such that{e; ,e;,, e }
forms a set of edges of a triangle.

HP;ii: There exists a positive integér< m;, < m-1, such that/, = Y u.. U My, is a subset o
that contains all the end points of the edgeE§nu ... U TI¢, i.e G, = (V,, I§ U ... U TI§) forms a
subgraph ofG. Then, either;

1. N = {e} such thatV, = V,_,,
or;

2. I§ = {eiy, €1 }, such thatVy \Ve, = My, +1 =My, =} and for1 < j <dy, ey =

[vi,,v], for somev;; € Iy u..u Iy, , where Wip o Vig 3 € Viea =Ty U U Ty,

induces a complete subgraph®f

2(G)=¢=|1¢ is called thelength of. For 1 < k < ¢, let d, = |I&| and the vector
d = (dy, ..., d,) is called theexponent vector of II. Define therank of IE as;rk 1€ = |V, | — 1 and
rk(G) = rk TIE = m — 1. We will call the blockITé singular block, if |V,_;| = |V, | andnon-singular
otherwise, i.eIl¢ is non-singular if| Vi\Vi-1 | =1.

A hypersolvable partitiori] is said to beuper solvableif, and only if, [T¢ has no singular block.

We will call a hypersolvable partitioli®, generic if £ > m, the exponent vectord = (1, ...,1) and
every k-eadges of cannot be ak-cycle,3 <k <m —1.
It is worth pointing out that;
1. For1l < k < ¢, the positive integem,, needs not to be equal ko— 1 in general.
£ =2 m-1=rk(G).
¢ =m- 1 if, and only if, Il is supersolvable.
1§ cannot be a singular block, sin¢é’2 | =3.
For 3 < k < ¢, if II{ is a singular block, thefi{ is a singleton.

a s~ DN
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1.2. Theorem: [5]

Let G be a connected graph. Thénis hypersolvable if, and only if; has a hypersolvable partition. A
connected hypersolvable graghis supersolvable if, and only, i has a supersolvable partition.

1.3. Lemma: (The complete property of TE ) [5]

Let G be a connected hypersolvable graph with a hypeabte partitionl1¢ = (I1V,11%). For2 < k <
2, if e, e, € TIE, then there exists a uniqeee NMEU ... UTIE_; such that{e;, e,, e} forms a triangle..

1.4. Definition: [5]

Let G be a hypersolvable graph with hypersolvable pantit Define ahypersolvable order on
G associated to an HA¢ = (I1Y,11%) and denoted by, as follows:

1. Put an arbitrary order on the vertices &ff.

2. If v, €I} andv; € I}’ such that;i < j, putv; S v;.

3. If e eNf ande' € I} such that;i < j, pute S e'.

4. If ee',e" €N, set;, Qe, Qe;, e, e ;. e, wherele e, e.}={ee, e}

1.5. Theorem: [15]

Agraph G = (V,€) is supersolvable if, and only if, there existsoatering v,, v,, ..., v,, ofits vertices
such that ifl < i <j <k <m, such that[v;, v,] € € and [v;,v;| € €, then[v;,v;] € €. Equivalently, in
the restriction ofG to the verticesu,, ..., v; the neighborhood od; is a clique.

1.6. Proposition: [5]

Let G = (V,E) be a supersolvable graph with a supersolvableitipartli® = (I1",11¥). Via a
supersolvable ordering on G, if [v;,v,] € € and[v;,v,] € €, then[v;,v;] €E, wherel <i<j<k <
m.

1.7. Definition: [11]

By ahyperplane H in a finite dimensional vector spade= K™ over a field K = R or C, we mean
an affine subspace of dimensigdimV —1 =m — 1) andan arrangement A is a finite collection of
hyperplanesH in V. The variety of A is N(A) = UpeyH and its complement is M(A) =
V\Upeq H. The intersection lattice is defined to bel = L(A) = {X|X =NgepH and B © c/l} that
ordered by reverse the inclusion, (i < Y & Y c X, for X,Y € L(A)), and ranked byk(X) =
codim(X) = dim(V) — dim(X), for X € L(A).

An arrangementA; is said to begraphic arrangement if, there is a graplt = (V, €) such that the
defining polynomial ofA; is, Q(Ag) = [} jjee(xi — x))-

We mention that;

1. rk(Ag) =7rk(G) = V| —1.

2. If K = (Vg, E) € G, thenrk(Ag) = 2 = |v] — 1 if, and only if, either|€x| = 2 or K is a triangle of
G.

3. Poincare polynomial ofd;, P(Ag,t) = x(G,—t), wherey(G,—t) is the chromatic function of.
Thus, forl <j < ¢, if b; is ajt Betti number of the Poincare polynomi&i(A, t), thenb; = The
number of colorings ofj vertices of G with t colors.

1.8. Proposition: [12]

A graph G is hypersolvable if, and only if, the graphic agamentA; is hypersolvable.
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1.9. Proposition: [5]
A graphG is supersolvable if, and only if, the graphic agamentA, is supersolvable. A graph
G = (V,€) is a generic graph if, and only if, its graphicaagementA is generic.

The important points to note here are that¢ it (V,€) is a hypersolvable graph, thefi; has a
hypersolvable partitiol’ = (I1,, ..., I1,) induced from the hypersolvable partitidif = (1", 11%), as for
1<k<¢? H;ell if, andonlyif, [;,j] € I§. 1" is called thénduced partition of I1¢.
1.10.Definition: [2]

Let I1 = (114, ..., I1,) be a partition of arf-arrangementA.

1. Asection S of II is a subarrangement e satisfied for eachl < k < ¢, either S n I, is empty or
a singleton. ByS(I1) we denote the set of all sectionsIbfand the sef, (IT1) denotes the set of all
sectionsS of II with |S| = k, we call such sections ofl, k-sections ofll. We will agree that the
empty sectiond, is a 0-sections offl.

2. The integer? is called théength of I1 and denoted by (II).

3. rk(Ily) = rk(nHer{lu...ur{k H)-

4. 11 is calledindependent if for every choice of hyperplanes, € 11, for 1 <k < ¥, the resulting?
hyperplanes are independent, iré(H, N ...N H,) = 4.

5 Let X € L.Let Il = (I1y,...,I1,) be a partition ofA. Then theinduced partition Ilyis a partition of
Ay, its blocks are the nonempty subs@itsn Ay, 1 <k < 4.

6. m is callednice, if 11 is independent and X € L\{V}, then the induced partitiofiy contains a
block, which is a singleton.

7. A is callednice arrangement if, it has a nice partition 1= (M, ..., I,). The vector of
integers d = (d4,..,d,) is said to be the exponent vectorddf if d, = |7, |, 1 <k < ¢.

1.11.Definition: [2]

1. A subarrangement of A is said to be aircuit, if it is a minimal dependent subarrangement/of
i.e. C\{H} is linearly independent, for any € C, i.e. rk(C) = | C| - 1.

2. Via a total ordering2 on the hyperplanes ofi, the correspondingroken circuit of a circuit C is
C = C\{H}, whereH is the smallest hyperplane . If |C| =k, then C is said to bek-broken
circuit. The set of all k -broken circuits of A will be denoted by BC,(A) and
BC(A) = Uj=, BC(A).

3. We call B € A, anNBC base of A, if it contains no broken circuit. Note that, suglset must be
independent and we will writ&-NBC base for B if |B| =k and we will agree thap’ is the
0-NBC of A. By NBC,(A) we denote the set of ak-NBC bases ofA and NBC(A) =
US_y NBC(A) .

4, If X € L(A). Then theNBC baseB € Ay, (i.e.Nyep H = X) is said to be arNBC base of.

5. If A is afactored arrangement with a factorizatinrDue a total ordering? on the hyperplanes ofl,
define,p_(A) = Max{k| NBC,(A) = S (r)}. We remarked thatl < ps(A) < ¢.

In view of definitions (1.10.) and (1.11), we reked the following:
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1. If d =(d,,..,d,;) bethe exponent vector of a nice partitidnit is known that;

P(A,t) =Thar(1 + dit) =14 (di+..+d)t + (X420 i 01 diydyy )2 + -+ dy . dpt?.

2. Independent of our choice of an orderiggon the hyperplanes afl, It is known that, thet™ Betti
number of the Poincare polynomi8l(A,t) = b, (A) = INBC,(A)| . According to [1], for a
hypersolvable arrangemeat;

be(A) = INBC (A < BEK R L3t iy i1 didy, o dyy, = 1S (D], for 1<k < 2.

1.12.Definition: [11]

Let K be any commutative ring and Let be an arbitrary total order that defined on thpenglanes
of an ¢-arrangementA. The Orlik-Solomon algebra (or for simplicity Oa®yebra) A, (A) is defined to
be the quotient of the exteridf-algebrak, = Ayso(@peq Key), by the homogeneous idesl(A) is

generated by the relationi;j?ﬂ(—l)"‘1 en;, ...e’fzj ey s for all 1<i; <::<i,<n such that
{Hil,...Hl-k} is dependent subarrangement4f i.e. Qﬂk(Hil,...Hik) < k) and the circumfleX means

e, is deleted. Define &-linear mappingd?: E, - E, as; dg(ey,) =0, d5(ey) =1, for all H € A

and for2 <k <, 9f(ec) = Tfoi(-1* ' en, .én, ey, C={Hy,..H,}. & is a differentiation on

- esr % O—, oF o of . .
E. and the chain compleXk,,df): -+—E, 5 E,_,— > E, > E,— 0, is called the exterior
complex.
1.13. Theorem: [11]

The complex(4.(A),d#) inherits a structure as acyclic chain complex frima exterior complex
(E.,0F), where d? = _0a* and y:E, » A,(A) is the canonical chain map. The acyclic chain
complex (A,(A), 04) is called the O-S complex.

1.14. Definition: [11]

Let K be any commutative ring. The broken circuit modMBC,(A) of the exteriorK-algebra
E, = /\kzo(eaHeﬂ KeH), is defined as;NBCy(A) = K and for1 <k <+¢, NBC,(A) be the free
K-module of E,, with NBC (no broken circuit) monomials badig;|C € NBC,(A)} € Ey, i.e,;

NBC,.(A) = jeype, ) Kec and NBC.(A) =®_, NBC,(A).

1.15. Theorem: [11]

The broken circuit subcomple§VBC,(A),dN5¢) inherits a structure as acyclic chain complex from
the exterior complexE,, dF), where 9¥5¢ = 9 o i, andi,: E, - NBC,(A) is the inclusion chain map.
Moreover, the restriction of the canonical chainpma:E, —» A,(A) of the broken circuit module
NBC.(A), is a chain isomorphism, defined as; far<k<¢, ,(ec) =ec+ [ (A) = ac,

C € NBC(A). Thus, the O-S algebra has the following strucasea freeK-submodule of the exterior

algebra: A, (A) =@y (Dcense, (1) Kac)-
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1.16. Definition: [11]

Let I1 = (11, ...,I1,) be a partition on a-arrangementA and letK be any commutative ringd
partition K-module is defined to bé€ll), = (I, ), ® ... ® (I1,),, where for1 <k <¢, (I,), is the
free K-module with basis 1 and the elementsibf For eachB = {Hil, ---sz} €S (I, ie. H; €1l ,

1<i;<--<ip,<¢ and1<m<k, defineg, =x; ® ..Q® x, € (1), as;

_{Hj ifj=i,forsomel <m<k
Il ifj#iy,foralll<m<k
We agree that each ojw =1® ..®1 and q, is homogeneous of degrde. We denoting the

k™-homogeneous part of (), by (). Therefore,(I). =@;_, (M =By (Bpes, ) Kq,) and
{qs|B € S, (IN)} forms a basis to the frek-module (IT),. Furthermore {q;|H € 11, } forms a basis to

the freeK-module (I1,),, 1 < k < . Define aK-linear mappingd": (I1), - (1), as; 95 (q{}) =0,
91(q,)=1foral HEA andfor2 <k <¢, 8;(q,) =2k, (D" ﬁ;j, where B = {H,,, .. H; } €

S, q, = x;® ...®x, as givenin (1.8), anéi;j =xQ ...®I-’I?j® ..®x, by means ofﬁ?}. =1. 97 is

a differentiation on(I1), and the chain compleg(Il),, d7) is called the partition complex;
oyl o, o¥ T af!
0- (D= [M)p-qg — = (D = (I = 0.
1.17. Definition: [11]

For 1 <k < ¢, define the a magp,:{q,|B € S, (I} - A,(A), as <pk(q3) =ap = eg + I,(A),

B € S (ID). Let ¢, : (1), — A, (A) be the uniqueK-linear map that extend this assignment. Accorgingl
there is a uniquel-chain mappinge: (I1), - A.(A) between acyclic chain complexes.
1.18. Theorem: [11]

The chain mapyp_: (I1), = A.(A) is a K-isomorphism between chain complexes if and onlghé
partition 7 is a Nice.

The theorems (1.16.) and (1.19), afford Ka-isomorphism, yx, = ;1o ¢,: (1), > NBC,(A)
between the partition complex and broken circumhptex.

1.19. Theorem: [11]

Let A be a complexf-arrangement and letd,(A) be its Orlik-Solomon algebra over the integer
ring Z. The mapey ~ (1/2nvV—1)wy induces an isomorphism*: 4,(A) » H*(M(A),Z) of graded
Z-algebras, wherevy = day /ay is the deferential 1-form foH € A and H = ker(ay).

1.20. Theorem: [3]

For any commutative ring( and fork > 0;

H¥(M(A),K) = H*(M(A), Z)Q@Tor (H* "1 (M(A), ), K),
where Tor (H¥**(M(A),Z),K) = ker(i**1,1,) from a free presentation;
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ik+1
00— Rk+1 L_) Fk+1 N Hk“(M(cﬂ),Z) N 0’

of H¥**(M(A),Z) as generator§**! and relationsR***.

2. An algorithm to compute the dimension of the first non vanishing higher homotopy group of the
complement of hypersolvable graphic arrangement
The advantage of studying the hypersolvable cldsgraphs lies in the fact it includes enormous
applications, including the class of supersolvdbiangulated or rigid circuit) graphs, the clagsgoaphs
with no triangles and many others.

In view of definition (1.1.) and definition (1.43n algorithm to reorder the vertices and the edfes
by an order that preserve the hypersolvable streafiG was stated. So, we will used this algorithm to
computep(M(c/lG)), the dimension of the first non vanishing highemotopy group ofM(A;) for any
hypersolvable graphic arrangement that not supeabtdas follows:

2.1. Construction:

Let G be a hypersolvable graph with hypersolvable partitil¢ = (I1%,11¥) and a hypersolvable
ordering <. Assume,lI® hass singular blocks sayfilj, ..M, 2<ly <--<I;<¢. Due definition
(1.1.) and definition (1.5.), we will reorderingethiertices and the edges @fby the hypersolvable order that
preservell¢ structure. Sinces is not supersolvable, hence it hak-aircuit (cycle) with no chordk > 4.
Every k- circuit, forms ak-Polygon,k > 4 and there is no mention about how many such tiezeithere
of G.

2.2. Theorem:
Suppose we have the conclusions of construction (2.1.). If;
D = {C <€ G|C is aj — circuit with no chord, j = 4};
thens = |D|. In fact, p(M(A;)) = ¢ — 2, where;
c(G) = ¢ = Min{|C|| C € D}.
Proof: First, we will proves = |D|. So we need to verify that, the edges gfarcuit with no chordj > 4,
must be distributed amonygdifferent blocks of I1€.

By contrary, assume there existg-aircuit C with no chord and a block¢ of ¢ contains two edges
of C saye; ande,. From the complete property & (lemma (1.3.)), there exists an edge ¥ U ..U
¢, such that{e;, e,, e} is a triangle. This contradicts our assumption thas a j-circuit with no chord.
So, inductively the edges @f must be contained ip different blocks off1® and via the hypersolvable
ordering the maximal edge satisfied that there is no vertex added/to, , (i.e.V; = V,_; ). Thus, the
block that containg’ must be a singleton. Therefore= |D|.

Secondly, ifc(G) = ¢ = Min{|C|| C € D}, we provep(M(A;)) = c —2. Recall Ali conjecture of
p(M(Ag)) from [1] as,p(M(Ag)) = {k|INBC(Ag)I=1S, ()]}, where NBC,(A;) be the set of all
k-NBC bases of the hypersolvable grphic arrangenaépt via the hypersolvable ordering asg (I1) is
the set of allk-sections of the induced hypersolvable partitidh due I1¢. According our first part proof,
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www.iiste.org



Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) pLLy
Vol 6, No.3, 2016 ST

Ac is ac-circuit of A; and Ac/{H;;, } € Sc_1(I") is its broken circuit. Thus|NBC,_1(Ag)| #
|Sc_1(I1")|. Therefore,(M(Ag)) = {klINBC, (Al = IS,(M)}=c—2 . m
2.3. Deformation method:

Suppose we have the conclusion of construction)(dtlis worth pointing out that, any hypersolvabl
graph can be deformed into a supersolvable grapkrddy adding edges or by deleting edges of ekery
Polygon with no chord. So, we can easily use theetsolvable partitiodl® and its exponent vector
d = (d4, ...,d,) to complete the grapti either by just adding edges to defofiminto a complete grapB,,
or by adding vertices and edges to defafninto a complete grapB, by a simple comparing with;

meBm) = ({[vy, vo1} {lve, val, [v2, vl o v, vl o V-1, v D)
that has exponent vectdfm = (1,2, ..,m — 1), or;
meBe) = ({[vy, v2 13 Allve, val, [v2, vsl} o v, vel, o) [Ve1, ve D
that has exponent vectd?’ = (1,2, ..., £ — 1).
For case (1): if d,, is the number of the edges Bf that containv, as a vertex, then we will add
(m—1) —d,, edges, forl <k <m in order to connect, with the other (m —1) —d,, vertices ofV
to produce a complete gragh,.
For case (2), we will add# —m vertices and k — d;, edges to the blocKj, for 2 < k < ¢ in order to
deform G into B,.

However, we can deforrd into a hypersolvable grapf' by deleting every non-singular block di ¢,
i.e. we will delete thes edges that related to tisesingular blocks of1¢. But by using this procedure, the
resulting deformed arrangemerd?! is either supersolvable or hypersolvable whiahdssupersolvable. So
we need to iterate the process until we requiredeformed supersolvable gragf whereb presents the
repetition number of the process. Via this defdromamethod, there is no vertex will be deleted. tba
other hand, ever¥-cycle of G with no chord will be broken, fok > 4.

In the following we emphasis a special kind of dnsip
2.4. Construction:

Let G = (V,¢) be a hypersolvable graph with hypersolvable partitil¢ = (I1",11¥) and a
hypersolvable orderinge. Assume,l1¢ has just one singular block and it is the last, oree rk(I1%,) =
[V] =m. SinceG is not supersolvable, hence it hak-ecircuit (cycle) with no chord k > 4. In this case,
there is just onen- circuit say;

C = {viys o vi), Vi vi, | [V vis | oo Vi Vi ) (V20 V2, )

with no chord and the edg{evil,vim] of 1%, is the maximal one of th&-circuit C via 2. Due the
deformation method (2.3.5; can be deformed into a supersolvable graph byidglthe edge[vil, Uim] of
the blockIlé,. Put, Gt = (V! =V, el = ¢ — 1) to be the deformed supersolvable graph. Definitély
is a supersolvable graph.
25. Corallary:

Suppose we have the conclusions of constructiegh)(Zhenp(M(Ag;)) = m — 2.
Proof: This is a direct result of theorem (2.2m.
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2.6. Example:

Every m-geniric graphG = (V,¢) is a graph with just one singular block is theckldli, and
p(M(Ag)) = m — 2. For example, the graph in figure (1.) iSsageniric graph withp(M(A;)) =3 and
figure (2.) shows its supersolvable deformed graph by deleting the last edge;

PN |
\_/

e

Figure l. A 5-geniric graph  Figure 2. A defomed graph ob-geniric graph
2.7. Construction:

Let G = (V,¢) be a hypersolvable graph with hypersolvable partitil¢ = (I1",11¥) and a
hypersolvable orderingt. Assume,I1¢ has just one singular block and itli§,_,, i.e. rk(I1{,_;) = |V| —
1=m—1. Thus,G has ak- circuit (cycle) with no chordk = 4. Actually, G has just oné- circuit
say,

C = ({vil, ...,viz},{[vil,viz], [viz,vi3 ) e [Uik—l'vik]' [vil,vik];

with no chord and the edd@il,vik] of II§,_; is the maximal one of the-circuit C via 2. For this case,
we cannot guess tha& can be deformed into a supersolvable graph bytidgleust one edges and
example (2.9.) demonstrate this goal.
2.8. Corallary:

Suppose we have the conclusions of constructiadh)(Zhenp(M(A¢)) = k — 2.
Proof: This is a direct result of theorem (2.2m.
2.9. Example:

Let ¢ and ¢’ be the graphs shown in figure (3.) and figure (dspectively. then each one of them has

L
AR

Figure 3. The graphG Figure4. The graphG’
Each one of them can be deformed easly by deletilugs into a supersolvabe graphs as shown in figure
(5.) and figure (6.) respectively:
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| - \\ PN

5

Figure5. A deformed graph of;  Figure 6. A deformed graph of7’

2.10.Example:

Let G, G' and G" be the graphs shown in the figures (2.10.1.),0(2.) and (2.10.3.) respectvely. The
graph G has p(M(Ag)) = 2 with s = 15 singular blocks ofll¢, the graphG’ hasp(M(A;r)) = 3
with s = 31 singular block of 1€ and the graphG" has p(M(A;r)) = 3 with s =27 singular
blocks of €. Deduce that, in spit of, each one of the graph&’ and ¢"' has no triangle, they are not
generic.

Figure7. The graphG Figure 8. The graphd’ Figure 9. The graphG”
It is clear that, to deform any one of the grapbsva by just deleting edges will be more completaied
it cannot be by applying the method for just orepst

3. Thecohomological ring of a hyper solvable graphic arrangement

In this section we restricted, a construction of #tohomological ring of the complement of any
hypersolvable arrangement discribed in [3], ondbmplement of any hypersolvable graphic arrangement
by using the hypersolvable partition of a graphcttire, as follows:

3.1. Theorem:

Let G be a supersolvable graph with a supersolvablétipartlI¢ = (I1",11¢) and a hypersolvable
ordering= and letIl’ be its induced supersolvable partition @y,. Then NBC(A;) = S(I1") and for
1<k<rk(G)=¢-1;

b (H'(M(AQ))) = XI5 B - i e1 diydiy - dig
and the cohomological rinff*(M(A¢)) can be determined by the following commutativeychan:
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ofL of, of ot afl
0— H'"'(M(Ag)) — H!72(M(Ag)) — - — H'(M(Ag)) — H'(M(Ag)) — 0

wzpl L w1 witl wytl
a7, o, o af ag
04, 1(Ag) — Ap2(Ag) —— A(Ag) — Ag(Ag) —0
il il it ot L

95 ), 9% o ol
0->NBC;_,(Ag) — NBC;_(Ag) — -+ > NBC,(Ag) > NBCy(Ag) =0

Proof: This is a direct result of theorem ((2.4.), [3])datheorem (1.19.), where th€-chain map
J.:NBC.(Ag) — (I1'), is the uniqueK-isomorphism that extends the one to one correspuralbetween
the bases oNBC,(A;) and (IT'),;

J.:{es|B € NBC(Ag) = S} - {q5|B € SO},
that defined as, J,(eg) = g5, B € S(T). =

3.2. Theorem:

Let G be a hypersolvable graph with a hypersolvableitpart I1¢ = (I1V,11¥) and a hypersolvable
ordering=2 such thatrk(A;) = m —1 < £, i.e. G is not supersolvable. Then, due theorem (2.2.);

2<p(Ag)=c—-2<m-—2;
and forl <k <c-2;
NBC (Ag) = S ("), NBC._1(Ag) = Sc—1(M\S._1 (INNBC._1 (Ag);

and forc <k <m—1, NBC,(Ag;) < S, (I1"). The cohomological groufl*(M(Ag;)) can be determined
by the following commutative diagrams:

oty o, o af af
HTUM(AG)) —— HT2H(M(Ag)) — — H'(M(Ag) — H'(M(Ag) —0

w;l 1 w;l, L witl wytl
a8, o, a4 o1 g
Ac_1(Ag) — Ax(Ag) —— Ay(Ag) — Ag(Ag) —0
Yl Yl d Pyt Yo'l

oty o, of a7y )
NBC._1(Ag) — NBC._(Ag) — =+ > NBC(Ag) > NBCy(Az) = 0

Fe1d Im—2 Jid Jod
9¢_1 o, 03 o1

M.y 25 ., S0 ay, B o, Lo

and;
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H
Oct1

m—1 i c ad
0> H™'(M(Ag) — —— HM(Ag) —

wptid w;tl
GRS 0841 a¢
024, 1(Ag) — +—— A(Ag) —
Yoy b Yol
I s oy
0> NBCp_1(Ag) — -+ —> NBC (Ag) —
ﬁm—l ‘]' ’ﬁ'c ‘]'

N 07 O , oh , -1 041 , oz
0->M)—=..— )y — Ty — —— @) —

Proof: According theorem ((2.5), [3]) and theorem (2.2Y)y claim is proved, where thi€-chain map
#.:NBC,.(Ag) - (IT'), is the uniqueK-injective chain map that extends the one to oneping that
embedding the NBC basis ®BC,(Ag;) of the basis ofI1),;
#.: {es|B € NBC(A;) € S(I)} - {q5|B € S},

that defined as, #.(eg) = q5, B € NBC(A;). Recall the definition ofp(A;) =c—2 of theorem
(2.2)). In fact, forl < k < ¢ — 2, sinceNBC, (A;) = S, (I1"), hence#, = Ji: NBC (A;) - (I1'), is an
isomorphism. Moreover, for — 1 < k < m — 1, the homomorphisng, = Jx: NBC, (Ag) —» (1), is a
monomorphism since NBCy(Ag) < S, (11"). m
3.3. Corollary:

Let G be a hypersolvable graph with hypersolvable panijtli¢ = (I1V,11%) such thatm > 4 and it
has an exponent vectdr= (1, ...,1), i.e. G has no triangle. Then we have the following:
1. If || =¢=m—1, thenG is supersolvable and the cohomological ring hasracture as shown in

theorem (3.1.) and fot < j <m — 1, b;(H*(M(Ag))) = (mj‘l).

2. If ¢(G)=¢=m, then G is generic have just onen -cycle and for1<j<m-1,
by (H*(M(Ag))) = |NBC;(Ag)| = (’J”) and by,_, (H'(M(Ag))) =m — 1. Due theorem (3.2.), the
cohomological ringH*(M(A¢)) can be determined as the following commutativedian;

i o, of of off
0> H™'(M(Ag)) —— H"2(M(Ag) — - — H'(M(Ag)) — H'(M(Ag) —0

wpld wpt, 1 witl wytl
o1 2 a4 a4 a4
0> Ap_1(Ag) —— Ap_z(Ag) —— A(Ag) — Ag(Ag) —0
Vg Ytz L Pyt o'l

Im—1 Iy 0F oY oy
0->NBCy_1(Ag) —> NBCp_5(Ag) — -+ > NBC1(Ag) > NBCy(Ag) =0

Fm-1 Im-2 1 Jil Jo d

o or _ or _ L3 T or
0->M)p— Moy — My, —5 = @), — @)y —0
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3. If ¢(G)<m—-1<¢, then G is neither supersolvable nor generic and fog j < c¢(G) — 2,
b (H* (M(A))) = INBG(AQ| = (7) and be_y (H'(M(AR))) = (™) = 1BCcs (A = (1) -

|0], where 0 = {C < G|C is a c — circuit with no chord} and the cohomological rindf*(M(A;))
can be determined as shown in theorem (3.2.).

Proof: Due theorem (2.2.4) in [5] and theorem (2.2.)ptlary claim is down.m

4. The second skeleton of the minimal CW complex for a hyper solvable graphic arrangements

This section contains an algorithm to comput treoed skeleton of the complement of a hypersolvable
graphic arrangement by using a fashoin of its fumelastal group as iterated semi direct product that
presented in [4] by Cohen and Suciu. This algoriteohnique has previously been introduced by Switze
in [16]. So we will agree this algorithm withoutomf and see [4, 12, 16] as evidences. In [3], AdiTand
the author was firstly used this technique in ortegive a topological interpretation for vanishiog
higher homotopy groups of the complement of a hsgeable arrangement when we deformed it by
Jambu's and Papadima's deformation method, s@fargl case we refer the reader to [3].
We start by reviewing the definitions and basidddbat we needed for the algorithm:
4.1. Definition: [12]
A topological spaceX with the following properties:
1. X is homotopy equivalent to a connected, finite t§W complex;
2. The homology groupd,(X) are torsion free, and,;
3. The cup productu: AH(X) - H*(X) is surjective;
is said to bep-minimal, for some non-negative integgr if it has the homotopy type of a CW compl&x
such that the number ok -cells in K is b, (X) = rk(H*(X)), for all k < p. We calledX minimal if it
is p-minimal, for all p.
4.2. Definition: [4]

Assume each of,, ..., G, be a group, and far <i < j < #, the actiomj: G; — Aut(G;) satisfying the

compatibility conditionse; (g}"’i‘(g‘)) = (a}(g)) el (g;)al(g:), fori < j < k. Then, we define the iterated

semi direct product of,, ..., G, with respect to the actiorzr;' to be the group;

G =Gy Ky, Gpq X o Ko, Gy,

ap-1

where for eachl < k < #, the partial iterationG* = G, K G*~! is defined by the homomorphism

ay: G*1 - Aut(G,) with a restriction tag,; W sg,; Gp = Aut(Gy), 1 <p <k <+

4.3. Definition: [11]
Let A be a complex central essentiatarrangement with complemert(A) € C". Define a
stratification 3 of C" as follows:
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1. For eachX € L(A), determine the arrangemest® = {H N X| H € A\Ay and H N X # @} of X,

where Ay = {H € A|X € H} € A, and;
2. Dfine M* to be the complement ai#* of X.
Notice that the family{MX}XEL(ﬂ) forms a stratification ofC” with top dimensional stratunM(A) and

each strata is a convex relatively open setX of

We emphasize that, Switzer in [16] showed that,afwy topological spac&, one can construct a CW
complexY (as showed in the following construction), and eakv homotopy equivalencg: X — Y and
this construction is unique up to homotopy.
4.4. Construction:

Let G be a supersolvable graph with a supersolvablehgrap= (m — 1)-arrangementA,. Then
A has a maximal chain of modular elements say;

Cct =X, < <X, ={(0,..,0);
which induces a supersolvable composition series;
{H} = Ay, € C Ay, = Ag... (4.4.1)

Ay is afiber type arrangement and the composition series (4.4.1.) creates a tower of fibrations;

M(Ag) = M(Ay,) 25 M(Ay, ) 25, B M(Ay,) = M(H) = C\{0};

with fiber F* of p, homeomorphic taC with d, points removed and the fundamental group of the

complementr = wr; (M(Ag;)) asserts a fashion of iterated semi direct prodfiinitely generated groups

T ="Fy, Xo, Fg, | Xq, , - Xq, Fq,, Wwhere Fy, = (g1, -, ga, k) is free ond, generators. This creates

a nice partitionIl = (11, ..., I1,) as follows;

1. Putll; = Ay, and we will chooséi € Ay, to be the minimal hyperplane via the fundamentalg
order that generats, , and;

2. For 2<k<¢, put I, = Ay \Ay,_, andoder the hyperplanes ff, via the topological ordering
that induced from the structure &}, as free group withg, , ..., g, x 9€nerators and preserve the
fundamental group structure as;

7T=<gik: 1<i<dy
’ 1<k<?

where eacha]” = a,(g;,) € Aut(Fy,).-

= > (4.4.2)

. ) 1<
;" (9ix) = 9559950 1<p<k

We will construct the second skeleton of a (fiigpe) minimal CW-complex structure aff (A;) as a
K(m, 1) space that given in ([21], section 6.44, p. 99uiced from the presentation (4.4.2.) above as
follows:

S1.Partitioned C¢ by the stratification defined in definition (4.3.)

S2.Choose any point itM (A), say e and putM(Ag) ° = {e°} to be the B-skeleton of M(A,).

S3.For eachH € Ag, fixed a 1-cellel and an attaching mappingk: de} — {e°} attached the

boundaries ofe} with e°. Take, M(Ag) ! = Vyes St = V£=1(Vf:"1591i'k) to be the I skeleton of
M(Ag). Geometricly, for each € A; we go around the stratum* and return intoe® by e}.
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Clearly; my(M(Ag),e%) = my(M(Ag)t, e®) = 0, since M(Ag)' is path connected.
$4.The following short exact sequence represents the presentation (4.4.2);
1<i<dy
1<k<?
For each relation r,, choose a mag;: (S',e% - (M(Ag)', e°) by meaning off(r,). Attach
2-cells ef of M(A)' by the mapsp] to create the second skeleton M{A;) as the following

B
0-(r 1<y <Dby(Ag))—>(gix; m;(M(Ag),e®) = 0.

disjoint union;
, LT M) T M)
MA)? =M | [er =M | o 8
oy 7

Put £,?: (D?,5%,50) = (M(Ag)', ¢ (51),e°) be the characteristic map ef, for 1 <y < b,(Ag).
Thus, m (M(Ag),e%) = m (M(Ag)? e% and;

M(AG)?/M(AG" = V,20" ) s2.

4.5. Construction:

Let G be a hypersolvable graph with a hypersolvable l[gcagm — 1)-arrangementA, that not
supersolvable, recall Jambu's and Papadima's gtea family {A,},cc of deformed supersolvable
arrangements that introduced firstly in [12]. Wda a computation algorithm given in [9] ofl = A,
for A;. The arrangementd is a supersolvable arrangements and it has wiith the same Lattice
intersection pattern to codimension twWg(A;) = {B < Ag;||B| < 3} and isomorphic fundematal groups,
i.e. m=m(M(AG)) = my(M(A)) =y (M(A)?, E%), where M(A)? is the 3% skeleton due [3]. Thus;

= (M(A)) =Fq, g, Fg, | %q,
derived a hypersolvable partitior = (I1,, ..., [1,) by using the one to one coorespondance betwégn

o Ko, Fy s

and A. Due this one to one coorespondance reorderelaytierplanes o4, via the ordering we defined
on the hyperplanes aff as in construction (4.4.) that induced from thacttre of the fundamental group.
We will construct the second skeleton Mf(A;) exactly as designed in construction (4.4.), tleeng
(S1-S4).

4.6. Remark:

The advantage of studying the second skeletorhgparsolvable graphic arrangemen; lies in the
fact that, if X € L(A;) andrk(X) =2 , then either|Ayx| =2o0r3. In fact, for1 <p <k < ¥, the
colinear relationsr,, for 1 <y < b,(A¢), among the hyperplanes of are associated to the triangles of
€. S0, there are just two kinds of relations asofes:

1 If X ={H;p, H}, then, the actiom,{"’(gi,k) = g;x is trivial and the relation will be a usual
commutator relation, i.eg;,}g;;gi_kgj_p = 0, i.e. we have a torus relation as the followirgife:
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Figure 10. A trivial action . g;x 975 9:x9jp = 0

For example, ifQ(A¢ ) = (1 — x3) (x5, — x3) (x5 — x,), be the defining polynomial of an arrangement
A ,thenA, is supersolvable graphic arrangement with fundaatemoup of its complement is;

92 = 919201
1 (M(A),e°) = (91,92, 931 g3 = 91" 9391)-
93 = 95939,

Then, it has second skeleton as;

Figure 11. A second skeleton ofd; , Q(Ag ) = (x1 — x3) (%, — x3) (x5 — x)
2. It X ={H,,, Hyx, H;,}, we have the following relations and attaching piag via those relations;

Figure 12. a. Part one of the actiong; ,92x93x = 93xk91.p92k
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Figure 12. b. Part two of the actiong, x g3 k91 = 93, 91.p92.k

Figure 12. c. The second skeleton represented the actipng, xgsx = Jsx91p92k = 92k93k91p
The second skeleton given in figure (4.6.5.), is Miinimal CW complex for the supersolvable graphic
arrangement A; that related to a graph given in figure (4.6.6.3shdefining polynomial,
Q(Ag) = (%, — x3)(x; — x3)(x, — x3), and its complement is homotopic (§1VS?) x S?.

Figure 13.
We mentioned here that, due [13], the relatiorigare (4.4.7) is selfed contained in figure (4.5.60 there
are no attaching cell related to this relation twtespondence to a broken circuitdf; via fandamental
group order.
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Figure 14. Part three of the actiory; ,9, x93k = 92.k91.p93.x
By following the fundamental group structure of ttmmplement of any graphic arrangement and the
type of the actions among the different blocksIbfthat we discussed above, the second skeleton has a
regular construction. We leave it to the readesdostruct the second skeleton for the section Xangples
as we shown in the following example:
5.2. Example:
Let A; be a generic graphié-arrangement. Then;
Q(Ag) = (1 — x2) (x — x3) (x5 — x4) . (pmq — x2) (g — 1),
Be its defining polynomial. The fundamental grodt® complementM (A;) has a structure as;
m; (M(Ag), e°) = {91, 92, 9l Gk = G5 IkGp, 1 S p <k < 4).
Due to [9], the deformed arrangement of C**! has a defining polynomial;
Q(A) = (x1 — %) (X = x3) (3 = X4) o (Kpmp — Xp—1) (Xp—q — X1 + Xp4p).
And by applying construction (4.5.), we will constt the second skeleton & (A;) as follows:
S1.Partitioned C¢ by the stratification defined in definition (4.3.)
S2.Choose any point itV (A;), say e® and putM(A;) ° = {e°} to be the B-skeleton of M(A;).
S3.For eachH € Ag, fixed a 1-celle} and an attaching mapping}: del — {e°} attached the

boundaries ofe} with e®. Take, M(Ag) ! = Ve S* = Vi (VEE, S5.,) to be the T- skeleton of

M(Ag).
$4.The following short exactequence represents the presentation (4.4.2);

B a
09k = 9p ' Gxp» 1<p <k <€)>(g1,92..,9¢) > 1 (M(Ag),e°) - 0.

For each relatiorg, = g,"9gxgp, 1 < p <k < ¢, choose a map;,:(S*,e°) - (M(A;)',e°) as
shown in figure (4.6.1.). the number of the 2-celfs, of M(A;)" that attached by mapg;, to

£

create the second skeleton Mf(A), is (2

) and the second skeleton will be;
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2 SZ
M(Ag) % = M(Ag) 1]—L=1 Uk=p+1ep'k = M(Ag) 1]—[17:1 ]—[k:p+1 pk
<P;2;k ‘Pzz;k

Thus, ; (M(Ag), e°%) = m,(M(Ag)?, e%) = ZF. Actually, M(A;)?/M(Ag)" = Vﬁ Z1 Ve p+1S

5. The pt* skeleton of the minimal CW complex for a hypersolvable graphic arrangements

This section is devoted to introduce an algoritlomcompute the higher skeletons of theminimal CW
complex of the complement of a hypersolvable giam@rrangement by using a computation of a
presentation of first non-vanishing higher homotgpyup introduced in [12] by Papadima and Suciu.

5.1. Construction:

For a supersolvable graph#t= (m — 1) -arrangementA,, recall construction (4.4.) for the second
skeleton of M (A;). We will complete the Minimal CW complex favi (A;) by using induction to attach
higher cells due Switzer prosedure [16], as follows
For 2 <k <¢¥,if;

0= (151 <y < by (Ag)) 5 (g5:1 <9 <my)) 5 T (M(Ag),e%) = 0 - 0.
be the presentation short exact sequence okthehigher homotopy groupr, (M (A;),e®) such that the
set of generatore{;gﬁ} generatsr, (M (Ag)%, e%) = 0, where m, represent the number of higher

k-holes of M(Ag)*¥ and for 1 <y < byi1(Ag), let pf*1: (8%, s0) = (M(Ag)*, e°%) be the attachin
mapping representing the relathih(r) and attach(k + 1) -cell ey k+1 py means of<p]’,‘+1. But,
T (M(Ag),e%) =0, 50 B:(rf51 <y < byyq(Ag)) = (g%;1<9<my)) is an isomorphism. Thus,
My = byyr (AG)=2h 5 B0 K 1 2 = i1 iy diy - dy PUL;

i1=1 ir=i1+1

bk+1(M(v‘lc)) br+1(M(Ag))
M(AG) 4 = M) | [y AeM k] [ s

k+1 k+1

In the long exact homotopy sequence;

k+1

e 2 M1 (M(AG), M(A) %) — mp (M(Ag)", e%) - m(M(A**,e%) - -]

we haved,,, is an epimorphism. Thereforar, (M(A;) 1, e%) is trivial and m;(M(Ag;)*,e%) =
m;(M(Ag)¥, e for 0 <i<k.
i (M(Ag)?e%); ifk=1
0; ifk+1

Finally, take the minimal CW complex fo¥ (A;), [14_, M(Ag)* with the weak toplogty.
5.2.  Construction:

For the second skeleton of the minimal CW complea bypersolvable graphi¢m — 1)-arrangement
that is not supersolvable, recall construction.j416is known that,M (A;) is a p-minimal CW complex,
where, p = p(Ag) = max{k|b,(Ag) = Xi 5 S0E LN c v diydiy i)

T (M(Ag), %) = m (M (A, ) = |
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From theorem (2.2.)p = ¢ — 2. Accordingly, our aim will achived by three parts.

First, embed A; of €’ by the arrangementA;DC!™" = {HOC | H € Az}, which its
complementM(JZGEB(C"‘r) is a subspace of the complemeif.A) of Jambue's-Papadima’'s deformed
arrangement ofA;. Deduce thatM(A;) = M(Ag) X {(0, ...,0)} is a strong deformation retract of
M(ASCT). It is to be expected thatM(A), M(Ag)) is a topological pair, sinceM(A;) =
M(Ac®CT) € M(A).

Secondly, recall the exact homotopy sequence of higher hopyogroups of the topological pair
(M(A), M(Ag)) from ([16], p. 38);

o m(M(Ag), e°) X 1 (M(A), €°) B 1y (M (A), M(Ag), )

B e (M(A), ) %3 . B g1 Ag), €0) S oM (A), €0) By M(A), M(AR), e B0
where e® can be chosen to be any pointM{A;) x {(0, ...,0)}. Papadima and Suciu in [16], proved that
M(A;) and M(A) have the same(c — 2)" -skeletons, (i.e.m,(M(A), M(Ag),e®) =0 , for
0<k<c—2) and they have isomorphi&‘" -higher homotopy groupssm,(M(A;),e®) and
T (M(A),e?), for 0 <k < c—3 <r. Recall construction (5.1.) as a minimal CW compbé M (A)
and recall construction (4.5.) as a minim# skeleton ofM (A;). For 0 < k < ¢ — 3, the isomorphisms,
i (M(Ag), %) » i (M(A),e®) and qy: i (M(A),e®) - m (M(A), M(Ag),e®) induced cellular
homotopy equivalences betwedn — 2)t"-skeletons ofM(A;) and M(A), iy: M(Ag)* — M(A)*
and q: M(A)* - M(A)K.

Thirdly, complete thec — 2-minimal CW complex forM(A;) by using induction to attach higher
cells due Switzer prosedure [16], as follows:

For 2<k<c-3,
The homotopy equivalence,: M (A)* — M(Ag)*, iduced an isomorphism;
Qe T (M (A, €°) = i (M (Ag), e°).
Due construction (5.1.), we have;

0 (51 <y < bipa (A) S (g5 1 <9 < M) S m (M(A), ) = 0> 0

Qi 3T iy
e (M(Ag), e°)

my(A)

Thus, the set {qk(gﬁ)} generates the homotopy group,(M(Ag)* e%) and for 1<y <

bes1(Ag), if @ft: (S5, s0) = (M(A)*,e%) be the attaching mapping that represent(@;*) of

T (M(A)*, e%), put g, (S¥, s0) > (M(Ag)*, €% to be the attaching mapping that represents the
relation q,B(r;¥) of m(M(Ag)*,e%). Attach (k + 1)-cells ef** by means ofg,ef*?, for 1<y <
bi+1(A). Put;

M(dq )k+1 M(dqc) ku+1(M("q)) k+1 M(c/q ) ku+ig—1\;’(fﬂ))5k+1

PRkt

For k=c—2:
It is known that,m,_,(M(Ag) L, e%) = m._,(M(Ag),e°) 2 0, i.e. it is not trivial and [12] includes a
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presentation of it as @r-module, say;

B ~
0> (5% 1<y < by (Ae)) > (g5 51 <9 < mey)) S mey(M(A), %) 0.

From the following portion;

de il_
Moot (M(AG) ™, M(AG)*2,e°) =5 m,_,(M(Ag) 2, %) S, (M(Ag),e®) 2 0

ez 4T qc—>
T (M(A)°?,e°%)

the induced homomorphisng_,: m._,(M(A)°?,e%) - m._,(M(Ag)2,e% is an isomorphism and
iy (M(AG) 2, e%) - m_,(M(Ag),e%) is an epimorphism, since they have the same set of
generatores{g§}g<;?, wherem,_, = XIS ¥t LY i s1didy, . dy, = b1 (A) represent

the number of highelc — 2)-holes of M(A)“"% and for 1 <y < b._1(Ag), let o5~ 1: (571, s50) =
(M(A)7?,e°%) be the attachin mapping representing the relafiéry =) and attach(c — 1)-cell e;~"

by means of¢§‘1. It is worth pointing out that the the number tihahing (¢ — 1)-cells is not enough to

kill of all the higher (¢ — 2)-holes. Put;

be-1(M(Ag)) be-1(M(Ag))

MA) T =M AN [m et =M ] [in s
oyt eyt

with the weak toplogty. Therefore, f@r < k < ¢ — 2.

1 (M(Ag)? e°); ifk=1
T (M(Ag), e°) = mp(M(Ag) T, e%) = 0; ifk=00r1<k<c-3
e, (M(Ag) ™, e%); ifk=c—2

5.3. Example:

Recall example (4.7.) of a generic grapifiarrangement4, and its deformed arrangemesit of
C**'. One can deduce tha# has the same lattice with the Boolen arrangeméht #+ 1 hyperplanes.
By applying construction (5.2.)p(M(</lG)) = ¢-skeleton of M(A;) can be considered and suppose
M(A;)*! beits £ — 1-skeleton. Recall the portion;

_ dp _ ip_
T[{’(M(qu)eﬁM(qu)e 1'60) - T[{’—l(M(‘AG){ 1,60)[—%71'[_1(1\4(040),60) #0

L1 4T qoy
Tp_q (M(cﬁ)f'l, eo)

The induced homomorphisng,_,:m,_y(M(A) ™, e°) - mp_y (M(AG) ™, e%)is an isomorphism and
ip_1imp_ (M(AGT L, e%) > mp_ (M(Ag),e°%) is an epimorphism. Thusm,_,(M(A)¢ 1 e®) and

my—1

PR where

mp_1(M(AG) 1, e°) have the same set of generatores sajys ™}
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2+1

Mp_q = ( ’ ) =£+1=b,(A) represent the number of high€f — 1)-holes of M(A)*~* and

b,(Ag) = £ — 1, represents the number of attachi@g)-cells which is not enough to kill of all the highe
(¢ — 1)-holes.

6.

Conclusions:
In this paper;
The author compute the dimension of the first nanishing higher homotopy group of the complement

for any hypersolvable graphic arrangement thatsnpersolvable, and related to a hypersolvable graph

It is equal to the dimension of the smallest cyfléhe graph with no chord.

An algorithm to deform a hypersolvable graph thet supersolvable into a supersolvable graph was

stated.

A construction of the cohomological ring of the qdement for any hypersolvable graphic arrangemen

was considered.
A construction to compute the minimal CW complexaffthe complement for any hypersolvable
graphic arrangement was described.
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