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Abstract

According to the powerful geometric properties of the hypersolvable
order on the hyperplanes of a supersolvable arrangement, we introduced
a sufficient condition on the Orlik-Solomon algebra for any central ar-
rangement to have supersolvable analogue and we showed this condition
as a necessary condition (not sufficient) on the Orlik-Solomon algebra
for any central arrangement to be K(π; 1). Finally as an illustration of
our result, we produce to the Orlik-Solomon algebra for the complex-
ification of the Coxeter arrangement of type Ar and Br, for r ≥ 3, a
structure by their supersolvable partitions analogues.

Keywords: Hypersolvable arrangement, supersolvable arrangement, Orlik-
Solomon algebra, quadratic Orlik-Solomon algebra, K(π; 1) arrangement, Cox-
eter arrangements and complex reflection arrangements

Introduction

Let A = {H1, ..., Hn} be a complex hyperplane r-arrangement with comple-
ment M(A) = Cr \ ⋃n

i=1Hi. The problem of expressing the cohomological
ring for the complement M(A) with arbitrary constant coefficient in terms of
generators and relations was firstly studied by Arnold ([3], 1969) in case A
was the Braid arrangement, i.e. A(Ar) = {xi − xj |1 ≤ i < j ≤ rk(A)}. This
problem was later studied by Brieskorn ([6], 1971) for general case. Orlik and
Solomon ([14], 1980) generalized Brieskorn result by constructing a graded al-
gebra A∗

K(A) associated to a complex r-arrangement A and their description



282 Hana’ M. Ali

involves the geometric lattice of intersections, L(A) = {X ⊆ Cr | X =
⋂

H∈BH
and B ⊆ A} of A which is partially ordered by the inclusions and ranked by
rk(X) = codim(X) = r − dim(X). For any commutative ring K and an ar-
bitrary total order � on the hyperplanes of A, they defined A∗

K(A) to be the
quotient of the exterior K-algebra E∗

K =
∧j≥0(

⊕
H∈AKeH) by the homoge-

neous ideal I(A) that generated by the relations
∑p

k=1(−1)k−1eHi1
...êHik

...eHip
,

for all 1 ≤ i1 < ... < ip ≤ n such that {Hi1 , ..., Hip} is dependent. They proved
that A∗

K(A) (which named by their name), is isomorphic to the cohomological
ring of the complement H∗

K(M(A)).
For a given total order � on the hyperplanes of A, by a circuit C ⊆ A, we

mean a minimal (with respect to inclusion) dependent set. We call C = C\{H}
a broken circuit of a circuit C, if H is the smallest hyperplane in C via �, where
an NBC base B of A is defined to be a subarrangement of A that contains
no broken circuit. The important point to note here is the collection of all
monomials that related to the NBC bases of A forms a basis of the Orlik-
Solomon algebra as free graded module. We refer the reader into [13] as a
general reference.

Jambu and Papadima in ([9], 1998) and ([10], 2002) introduced the hyper-
solvable class of arrangements as a generalization of the supersolvable Stanley
class ([15], 1972) by using the collinear relations that encoded in the lattice
intersection pattern up to codimension two L2(A) = {B ⊆ A | |B| ≤ 3}.

The aim of this paper is to study the property that encoded in the struc-
ture of A∗

K(A) and inherits to an arrangement A a fashion as a supersolvable
arrangement. We served our goal as follows:

• Firstly, to control the intersections lattice L(A) of a supersolvable ar-
rangement A, we derived a factorization Π on A from the hypersolvable
analogue (definition (1.2)), We called it a hypersolvable partition and
denoted by SP. The hypersovable partition that we denoted by HP, in-
troduced firstly by Ali in (2007, [1]) and the existences of such partition
forms a necessary and sufficient condition to any central arrangement to
be hypersolvable arrangement [2]. Consequently, the hypersolvable order
on the hyperplanes of A via a fixed SP was defined (definition(1.3)).

• Björner and Ziegler in ([5], 1991), gave the impression to reconstruct the
supersolvable lattice from the incidences of its L2 by using a suitable
order. We used their technique to derived an SP on a supersolvable
arrangement, only by using the existence of a suitable order that respects
the supersolvable structure as shown in following result:

Theorem 0.1. Let A be a central arrangement. A is supersolvable if,
and only if, every subarrangement of A which contains no 2-broken cir-
cuit forms an NBC base of A under an order that preserves the super-
solvable structure.
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It is worth pointing out that the hypersolvable ordering is the best since
it is induced from the supersolvable structure.

• Our main result gave a link between the structure of the supersolvable
arrangement and the structure of the Orlik-Solomon algebra. The ad-
vantage of using the quadratic Orlik-Solomon algebra A

∗
K(A), lies in the

fact that it is constructed just from the structure of L2, (definition (1.6)).

Theorem 0.2. A central r-arrangement A is supersolvable if, and only
if, A∗

K(A) = A
∗
K(A) under an order that preserves the supersolvable

structure.

• For a supersolvable arrangement A all the higher homotopy groups of
the complement are vanished and such arrangements are called K(π, 1)
arrangements, where π = π1(M(A)) is the fundamental group of the
complement of A. In ([7], 1962), Fadell and Neuwirth proved that
the supersolvable Braid arrangement A(Ar) is K(π; 1). In ([9], 1973),
Brieskorn extended this result to a large class of Coxeter groups and
conjectured that this is the case for every Coxeter group. All reflec-
tion arrangements have been known to be K(π; 1) since the late of 1980.
These outstanding cases were settled only recently by Bessis [4]. In ([18],
2013), T. Hoge and G. Röhrle classified all supersolvable reflection ar-
rangements. They proved that all the reflection arrangements of type
D4, G24, G25, G26, G27, G29, G31, G32, G33 and G34 are not supersolvable.
That is, they are K(π; 1), but they are not supersolvable arrangements.
On the Other hand, Papadima and Suciu in ([14], 1998) proved that, a
hypersolvable arrangement is K(π; 1) if, and only if, it is supersolvable.
The assertion above leads us to give an answer to a part of a question
given in [11]: Is the quadratic property of Orlik-Solomon algebra A∗

K(A)
can produce to the complement M(A) of an arrangement A, a structure
as K(π; 1) space? our answer is in following results as direct application
to theorem (0.2) above:

Corollary 0.1. If A∗
K(A) = A

∗
K(A) of an r-arrangement A, then A is

K(π; 1). But the converse need not to be true in general.

Corollary 0.2. The Orlik-Solomon algebra A∗
K(A) = A

∗
K(A) of a hy-

persolvable r-arrangement A if, and only if A is K(π; 1).

Corollary 0.3. A complex reflection arrangement A is hypersolvable if,
and only if the Orlik-Solomon algebra A∗

K(A) = A
∗
K(A).

• Finally, as illustrations of our result, we computed the Orlik-Solomon
algebra of the complexification Coxeter arrangements of type Ar and Br,
r ≥ 3.
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1 Preliminary Notes

In this section we review some basic definitions and throughout this paper
there is no loss of generality in assuming that A is an essential, central r-
arrangement of hyperplanes over C with |A| = n.

Definition 1.1. [12] A partition Π = (Π1, ...,Π�) of A is said to be indepen-
dent if any resulting � hyperplanes Hj ∈ Πj, 1 ≤ j ≤ � are independent. A
sub-arrangement S = {Hi1, ..., Hik} of A is called a k-section of Π, if for each
1 ≤ j ≤ k, Hij ∈ Πmj

for some 1 ≤ m1 < · · · < mk ≤ �. Notice that, if Π
independent, then all it’s k-sections are independent. By Sk(A) we denote the
set of all k-sections of Π and S(A) =

⋃�
k=1 Sk(A). We call Π a factorization

of A if it is independent and for each flat X ∈ Lk(A), the induced partition
ΠX = (Π1

X , ...,Π
k
X) of AX = {H ∈ A|X ⊆ H} contains a singleton block,

where for 1 ≤ j ≤ k, Πj
X = Πm

⋂AX �= φ for some 1 ≤ m ≤ �.

Definition 1.2. [1] A partition Π = (Π1, ...,Π�) of A is said to be hypersolv-
able with length �(A) = � and denoted by HP, if |Π1| = 1 and for a fixed
2 ≤ j ≤ �, the block Πj of Π, satisfies the following properties:

j-closed property of Π: For every two distinct hyperplanes H1, H2 of Π1

⋃ · · ·Πj,
there is no H ∈ Πj+1

⋃ · · ·Π� such that rk(H1, H2, H) = 2.

j-complete property of Π: For every two distinct hyperplanes H1, H2 of Πj,
there is H ∈ Π1

⋃ · · ·Πj−1 such that rk(H1, H2, H) = 2. From (j − 1)-
closed property of Π, the hyperplane H must be unique and it will be
denoted by H1,2.

j-solvable property of Π: For every three distinct hyperplanes H1, H2, H3 of
Πj, the resulting hyperplanes from the j-complete property of Π, H1,2, H1,3, H2,3 ∈
Π1

⋃ · · ·Πj−1 are either equal or rk(H1,2, H1,3, H2,3) = 2.

A hypersolvable partition Π is said to be supersolvable and denoted by SP,
if �(A) = r. For 1 ≤ j ≤ �, let dj = |Πj|. The vector of integers d = (d1, ..., d�)
is called the d-vector of Π and we define the rank of the blocks of Π as rk(Πj) =
rk(

⋂
H∈Π1

�···�Πj
H). We call Πj singular if rk(Πj) = rk(Πj−1) and we call it

non singular otherwise.

Observe that, rk(Πj−1) ≤ rk(Πj) in general and if � ≥ 3, then every three
distinct blocks Πi1 ,Πi2,Πi3 ∈ Π are independent.

Proposition 1.1. [2] A is hypersolvable if, and only if, A has a hypersolvable
partition. A is supersolvable if, and only if, A has a supersolvable partition.
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Definition 1.3. Let A be a hypersolvable arrangement with a fixed HP, Π =
(Π1, ...,Π�). Via the order that given on the blocks of Π, a hypersolvable order
on A is defined to be a total order � on the hyperplanes of A as for any two
distinct hyperplanes H,H ′ ∈ A, if H ∈ Πi and H ′ ∈ Πj such that i < j,
then H�H ′. Since Π1 is a singleton, hence its hyperplane will be the minimal
hyperplane of A via �.

From now on, if A is a hypersolvable r-arrangement, then the hyperplanes
of A will ordered by a hypersolvable order related to a fixed Hp Π and we will
use the following notation:

1. We will denote the set of all k-broken circuits of A by BCk(A) and
BC(A) =

⋃r
k=1 BCk(A).

2. By NBCk(A) we denote the set of all k-NBC bases of A and NBC(A) =⋃r
k=1 NBCk(A).

Definition 1.4. The Orlik-Solomon algebra. For any commutative ring
K and an arbitrary total order � of (A), defined the Orlik-Solomon algebra
A∗

K(A) to be the quotient of the exterior K-algebra E∗
K =

∧j≥0(
⊕

H∈AKeH)
by a homogeneous ideal I(A) generated by the relations

k∑
j=1

(−1)j−1eHi1
...êHij

...eHik
,

for all 1 ≤ i1 < ... < ik ≤ n such that rk(Hi1 , ..., Hik) < k.
Observe that if Ik(A) = {eB| B ⊆ A, |B| = k + 1 and rk(B) < k + 1} be

the set of all those monomials that spanned by the dependent subarrangements
of A with cardinality k + 1, then ∂k+1

E Ik(A) generates Ik(A), where Ik(A) =
I(A)

⋂
Ek

K and ∂∗E : E∗
K → E∗

K is a differentiation defined on E∗
K as; ∂0

E(e{ }) =

0, ∂1
E(eH) = 1 and for 2 ≤ k ≤ n, ∂k

E(eS) =
∑k

j=1(−1)j−1eHi1
...êHij

...eHik
, for

each S = {Hi1, ..., Hik} ⊆ A. Notice that the differentiation ∂∗A : A∗
K(A) →

A∗
K(A) which is defined by ∂∗A = ψ∗ ◦∂∗E inherits to (A∗

K(A), ∂∗A) a structure of
an acyclic chain complex, where ψ : E∗

K −→ A∗
K(A) is the canonical projection.

We call the r-arrangements A1 and A2, A-equivalent if they have isomor-
phic Orlik-Solomon algebras. We mention that L-equivalent arrangements are
A-equivalent, but the converse need not to be true in general.

Definition 1.5. The quadratic Orlik-Solomon algebra. For any com-
mutative ring K and an arbitrary total order � of A, the quadratic Orlik-
Solomon algebra A

∗
K(A) is defined to be the quotient of the exterior algebra∧j≥0(

⊕
H∈AKeH) by a homogeneous ideal J(A) generated by the quadratic

relations eHi2
eHi3

− eHi1
eHi3

+ eHi1
eHi2

, for all 1 ≤ i1 < i2 < i3 ≤ n such that
rk{Hi1 , Hi2, Hi3} = 2.
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Observe that the differentiation ∂∗
A

: A
∗
K(A) → A

∗
K(A) which is defined by

∂∗
A

= ψ
∗ ◦ ∂∗E inherits to (A

∗
K(A), ∂∗

A
) a structure of an acyclic chain complex,

where ψ : E∗
K −→ A

∗
K(A) is the canonical projection.

Remark 1.1. Observe that, if A be a hypersolvable r-arrangement with HP
Π = (Π1, ...,Π�) and d-vector d = (d1, ..., d�), then as a K- module the quadratic
Orlik-Solomon algebra can be represented as;

A
∗
K(A) 


�⊗
k=1

H∗(
∨
|Πk|

S1;K);

whereH∗(
∨

|Πk| S
1;K) is the cohomological ring (K-module) of the space

∨
|Πk| S

1

of wedge of |Πk| = dk of unit circles, (see [9]).

2 Main Results

In the follwing theorem we will used the existence of a suitable ordering that
classify the set of independent subarrangements of an arrangement A as a
sufficient condition on A to be supersolvable:

Theorem 2.1. Let A be a central r-arrangement. A is supersolvable if, and
only if, there exists an ordering such that every subarrangement of A which
contains no 2-broken circuit forms an NBC base of A.

Proof: Let us first assume A is supersolvable. Then A has an SP Π =
(Π1, ...,Πr). Via the order that given on the blocks of Π, define a total order �
on the hyperplanes of A such that for any two distinct hyperplanes H,H ′ ∈ A,
if H ∈ Πi and H ′ ∈ Πj with i < j, then H�H ′. By using � that induced from
the supersolvable structure of Π, one can easily check that every section B of
Π has no 2-broken circuit via �. It remains to prove that any subarrangement
B of A forms an NBC-base via � if, and only if, B is a section of Π. We first
assume B is an NBC-base and by contrary it is not a section of Π, i.e. there are
H,H ′ ∈ B ∩Πi, for some 1 < i ≤ r. From the i-complete property of Π, there
exists a unique hyperplane sayH” ∈ Π1∪...∪Πi−1 such that rk(H”, H,H ′) = 2.
Hence, H” is minimal than H and H ′ via �. That is {H,H ′} form a broken
circuit and that contradicts our assumption that B contains no broken circuit.
On the other hand, if we assume that B is a section of Π, then B is independent
subarrangement of A, i.e. either B forms an NBC-base or a broken circuit.
To obtain a contradiction, suppose B is a broken circuit. Thus, there exists a
hyperplane say H satisfies that H is the minimal hyperplane of A with {H}∪B
is a circuit. Let H ′ be the minimal hyperplane of B. Since Π is independent
partition, H�H ′ and rk(B) = rk({H} ∪ B), hence H and H ′ must be in the
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same block say Πi, for some 1 < i < r. By applying i-complete property
of Π, there exists a unique hyperplane say H” ∈ Π1 ∪ ... ∪ Πi−1 such that
rk(H”, H,H ′) = 2 and H” is minimal than H and H ′ via �. Consequently,
rk({H”}∪B) = rk({H}∪B) = k and this is a contradiction sine {H”}∪B is k-
dependent subarrangement of A and their hyperplanes distributed among k+1
independent blocks of Π. That is, we introduce the order that induced from
any SP Π on a supersolvable arrangement A as our best choice to emphasize
the property that every subarrangement of A that contains no 2-broken circuit
forms an NBC base of A.
Conversely, assume that there exists an ordering � on the hyperplanes of A
such that every subarrangement of A that contains no 2-broken circuit forms
an NBC base of A. We will prove that the order � construct an SP Π on A.
For this, we will define a relation on A as; H1 ∼ H2 for H1, H2 ∈ A if, and
only if, either {H1, H2} is 2-broken circuit or H1 = H2. We shall prove that
this relation is an equivalence relation:

• For reflexivity: It clear that if H ∈ A, we have H ∼ H .

• For symmetry: If H1 ∼ H2 and H1 �= H2, then {H1, H2} is 2-broken
circuit. Suppose H1,2 be the minimal hyperplane of A via � such that
{H1,2, H1, H2} is a circuit. Thus {H1,2, H2, H1} is a circuit with broken
circuit is {H2, H1}. That is H2 ∼ H1.

• For transitivity: Suppose H1 �= H2 �= H3, H1 ∼ H2 and H2 ∼ H3. We
needH1 ∼ H3. To this, letH1,2, H2,3 ∈ A be the minimal hyperplanes via
� such that {H1,2, H1, H2} and {H2,3, H2, H3} are circuits. If H1,2 = H2,3,
then rk{H1,2, H1, H2, H3} = 2 and that means {H1,2, H1, H3} is a circuit.
Therefore, H1 ∼ H3. Now, if H1,2�H2,3, we have {H1,2, H1, H2, H3} and
{H1,2, H1, H2,3, H3} are circuits with their broken circuits {H1, H2, H3}
and {H1, H2,3, H3} respectively. From our assumption, {H1, H2,3, H3}
contains a 2-broken circuit. We have H2,3 � H3, since H2,3 be the
minimal hyperplane with {H2,3, H2, H3} is a circuit. Suppose H1 ∼
H2,3 and H be the minimal hyperplane via � such that {H,H1, H2,3}
is a circuit. That is, {H,H1, H2,3, H3} is a circuit and that contradicts
our assumption that H1,2 is the minimal hyperplane via � such that
{H1,2, H1, H2, H3} is a circuit. Therefore, H1 � H2,3 and {H1, H3} is
the unique 2-broken circuit that contained in {H1, H2,3, H3}. That is
H1 ∼ H3.

It is suffices now to prove that the partition Π = (Π1, ...,Π�) that preserves
the ordering � and induces from this equivalence relation is an SP on A.
For |Π1| = 1: If H is the minimal hyperplane of A via �, then Π1 = {H},
since {H � H ′}, for any H ′ ∈ A.
For 2 ≤ j ≤ � we have the following:
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• For j-closed property Π: To show that, suppose H1, H2 ∈ Π1∪. . .∪Πj

and H ∈ Πj+1 ∪ . . .∪Π� such that rk{H1, H2, H} = 2. If H1 be the min-
imal hyperplane of A such that {H1, H2, H} is a circuit, then H2 ∼ H .
But this contradicts the fact thatH andH2 are from different equivalence
classes. On the other hand, if there is a hyperplane H ′ minimal than H1

with rk{H ′, H2, H} = 2. Then H ′ ∈ Π1 ∪ . . . ∪ Πj and {H ′, H2, H} is a
circuit. That is H2 ∼ H which also a contradiction. Therefore, there is
no hyperplane H ∈ Πj+1 ∪ . . . ∪ Π� such that rk{H1, H2, H} = 2.

• For j-complete property Π: For that, suppose H1, H2 ∈ Πj . Thus
H1 ∼ H2 and there is a hyperplane H be the minimal via � such that
{H,H1, H2} is a circuit. Thus, H � H1, H � H2. That means H ∈
Π1∪ . . .∪Πj−1 since the structure of Π preserves the order �. We remark
that the j − 1-closed property of Π implies that the hyperplane H is
unique and we will denoted it by H1,2.

• For j-solvable property Π: To do this, let H1, H2, H3 ∈ Πj such that
H1�H2�H3 and from the complete property for Πj we haveH1,2, H1,3, H2,3 ∈
Π1 ∪ . . . ∪ Πj−1. If rk{H1, H2, H3} = 2, then by applying the closed
property for Πj−1 we have H1,2 = H1,3 = H2,3. On the other hand,
if rk{H1, H2, H3} = 3, then H1,2 �= H1,3 �= H2,3. we shall prove that
{H1,3, H2,3} is a 2-broken circuit and H1,2 is the minimal hyperplane of
A such that {H1,2, H1,3, H2,3} forms a circuit. If rk{H1,2, H1,3, H2,3} =
3, then {H1,2, H1,3, H2,3} must be a section of Π, so it is an NBC-
base of A since it contains no 2-broken circuit. Thus, for 1 ≤ i ≤ 3,
{H1,2, H1,3, H2,3, Hi} forms a section of Π, i.e. it contains no 2-broken cir-
cuit. That is, {H1,2, H1,3, H2,3, Hi} forms an NBC-base of A and that con-
tradicts the fact that for 1 ≤ k1 < k− 2 ≤ 3, rk{Hk1,k2 , H1, H2, H3} = 3.
Therefore, rk{H1,2, H1,3, H2,3} = 2.

The above assertion implies that Π is an HP on A and from the fact that every
section of Π contains no 2-broken circuit, we have � = r and Π forms an SP
on A and our claim is down.

The important point to note here is the existences of a hypersolvable order
on a supersolvable arrangement A that satisfied above theorem give rise to an
SP Π = (Π1, ...,Πr) satisfied; NBCk(A) = Sk, for 1 ≤ k ≤ r. Now, We will
illustrate our hypersolvable order by the following examples:

Example 2.1. Let A(Ar) denotes the complexification of the Coxeter arrange-
ments of type (Ar, r ≥ 3) i.e the defining polynomial of A(Ar) is;

Q(A(Ar)) =
∏

1≤i<j≤r+1

(xi − xj).
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It is known that, A(Ar) is the Braid arrangement which is non essential r-
supersolvable and we will leave to the reader as a simple exercise to show
that the partition ΠAr = (ΠAr

1 , ...,ΠAr
r ) forms an SP on A(Ar), where ΠAr

k =
{x1 = xk+1, x2 = xk+1, ..., xk = xk+1}, for 1 ≤ k ≤ r. According to the
hypersolvable ordering that given in the structures of ΠAr

k above, 3 ≤ k ≤ r,
we mentioned that, every three distinct hyperplanes Hi1, Hi2 , Hi3 ∈ Πk has
rk(Hi1 , Hi2, Hi3) = 3, satisfied Hi1�Hi2�Hi3 if, and only if, Hi1,i2�Hi1,i3�Hi2,i3,
where Hi1,i2, Hi1,i3, Hi2,i3 ∈ Π1 ∪ · · · ∪ Πk−1 are the hyperplanes that arising
from the k-complete property of Π.
If A is an r-arrangement has the defining polynomial

Q(A) = x1.x2...xr

∏
1≤i<j≤r

(xi − xj);

then A is r-supersolvable since it has the SP, ΠA = (ΠA
1 , ...,Π

A
r ), where ΠA

k =
{xk = 0, x1 = xk, x2 = xk, ..., xk−1 = xk}, for 1 ≤ k ≤ r. According to the
hypersolvable ordering that given in the structures of ΠAr

k and ΠA
k above, there

is a one to one correspondence, π : ΠAr → ΠA which is define a one to one
correspondence π : A(Ar) \ T → A preserve the hypersolvable order that given
above, where T = ∩H∈A(Ar)H. Therefore, A(Ar) \ T and A are L2 equivalent
and they are L-equivalent as given in theorem (3.2.12) in [1].

Example 2.2. Let A(Br) denotes the complexification of the Coxeter arrange-
ments of type Br with defining polynomial;

Q(A(Br)) = x1.x2...xr

∏
1≤i<j≤r

(xi ± xj).

A(Br) is r-supersolvable has an SP ΠBr = (ΠBr
1 , ...,ΠBr

r ), where ΠBr

k = {xk =
0, x1 = ±xk, x2 = ±xk, ..., xk−1 = ±xk}, for 1 ≤ k ≤ r. The SP ΠBr has a
d-vector, d = (1, 3, 5, ..., 2r − 1).

The following result is the main result of our study. We will give a link be-
tween the quadratic property of the supersolvable (fiber-type) arrangement and
the quadratic Orlik-Solomon algebra as a sufficient condition on the structure
of Orlik-Solomon algebra of any central arrangement to produce a supersolv-
able (fiber-type) structure.

Theorem 2.2. A central r-arrangement A is supersolvable (fiber-type) if, and
only if, A∗

K(A) = A
∗
K(A) under an order that preserves the supersolvable struc-

ture.

Proof: It is known that if A is supersolvable, then there exists an ordering
on the hyperplanes of A such that A∗

K(A) = A
∗
K(A). Deduce that under the

hypersolvable ordering which preserves the supersolvable structure we have
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A∗
K(A) = A

∗
K(A). Conversely, suppose that there exists an ordering � on the

hyperplanes of A such that A∗
K(A) = A

∗
K(A) and by contrary suppose A is

not supersolvable. By applying theorem (2.1), according to � there exists a
subarrangement of A which contains no rank two broken circuit and it’s not an
NBC base of A. Thus, for a fixed 3 ≤ k ≤ r we have a k-broken circuit say B of
A which contains no rank two broken circuit. Deduce that if 1 ≤ i1 < i2 ≤ k,
Hi1 , Hi2 ∈ B, then {Hi1 , Hi2} ∈ NBC2(A). Suppose H be the minimal
hyperplane of A has the property C = {H}⋃B forms a circuit, since B is a
broken circuit. It is clear that C is a dependent subarrangement of A has the
following properties:

• For each Hi1 , Hi2 ∈ B, 1 ≤ i1 < i2 ≤ k, rk{H, Hi1 , Hi2} = 3, i.e. there
is no collinear relation among any three different hyperplanes of C.

• {H,H ′} ∈ NBC2(A) for each H ′ ∈ B. In fact, if {H,H ′} is a 2-broken
circuit, this contradicts our assumption thatH is the minimal hyperplane
of A with {H}⋃B is a circuit.

Thus, C is a dependent subarrangement of A which contains no collinear rela-
tion among any three hyperplanes of it and contains no rank two broken circuit.
Therefore, eC ∈ Ik and ∂k+1

E eC ∈ Ik, i.e. ∂k+1
A aC = aB − aH∂

k
AaB = 0Ak

K(A) and

aB = aH∂
k
AaB. On the other hand, eC /∈ Jk+1 and ∂k+1

E eC /∈ Jk. Thus; if
ψ(eC) = āC we have ∂k+1

A
āC = āB − āH∂

k
A
āB �= 0

A
k
K(A)

. That is, āB �= āH∂
k
A
āB

which contradicts our assumption that Ak
K(A) = A

k

K(A). Hence A is super-
solvable.

Corollary 2.1. If A∗
K(A) = A

∗
K(A) of an r-arrangement A, then A is K(π; 1).

But the converse need not to be true in general.

Proof: The first part is a direct result of theorem (2.2) and every complex
reflection arrangement not that neither A(Ar) nor A(Br), forms a counter
example of a K(π; 1)-arrangement which is not supersolvable, ( see [6] and
[8]).

Corollary 2.2. The Orlik-Solomon algebra A∗
K(A) = A

∗
K(A) of a hypersolv-

able r-arrangement A if, and only if A is K(π; 1).

Proof: Papadima and Suciu in [14] showed that a hypersolvable arrange-
ment A is K(π; 1) if, and only if, it is supersolvable and our cliam is a direct
result of theorem (2.2).

The following result is a direct result of the corollaries (2.1) and (2.2):

Corollary 2.3. A complex reflection arrangement A is hypersolvable if, and
only if the Orlik-Solomon algebra A∗

K(A) = A
∗
K(A).
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Example 2.3. Recall example (2.1). As an application of theorem (2.2), we
have:

A∗
K(A(Ar)) = A

∗
K(A(Ar)) 


r⊗
k=1

H∗(
∨
k

S1;K).

As well as, recall structure of the SP in example (2.2), the Orlik-solomon for
A(Br) can be given as:

A∗
K(A(Br)) = A

∗
K(A(Br)) 


r⊗
k=1

H∗(
∨

2k−1

S1;K).
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