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Abstract:

The aim of this paper is to construct the reflection matroids that related to some types of
reflection groups. The Coxetermatroid of the complexification of the Coxeter
arrangements(A(I;(n)),n = 4),(A(4,),n = 3), (A(B),n=3), (A(C,),n = 3)and(A(D,),
n =4) were constructed. As well as, the reflection matroids of the complex reflection
arrangements A(G,4), A(Gys), A(Gye) and A(G,7)were computed.
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Introduction:

The study of polytopes appears to interest more different kinds of peoples than any other
branch of Geometry. In (1948), Coxeter introduced the symmetry groups of the Platonic solid.
He started by introducing two-dimensional polygons and three-dimensional polyhedra. He then
gave a rigorous combinatorial definition of "regularity” and uses it to show that there are no
other convex regular polyhedra apart from the five Platonic solid. The concept of "regularity”
was extended to non-convex shapes such as star polygons, star polyhedra and then to
tessellations, honeycombs and to polytopes in higher dimensions. Coxeter introduced and used
the groups of reflections (that became known as Coxeter groups) to ensure his work. By a
reflection he means an endomorphism on a finite dimensional Euclidean space, s: R* — R" that
has a finite order and its fixed point set {x € R"|s(x) = x} = H, is a hyperplane of R", (i.e. H,
is a subspace of R™ has a codimension 1).A Coxeter group Gis a discrete subgroup that is
generated by a set of reflections of the general linear group GL(R™).

The concept of a "reflection™ has been extended to unitary space by Shephard (1953). A
reflection in unitary space is a congruent transformation of finite period that leaves invariant
every point of a certain prime (hyperplane), and it is characterized by the property that all but
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one of the characteristic roots of the matrix of transformation are equal to unity. The remaining
root, if the reflection is of period m, is a primitive mt*root of unity. In (1954), Shaphard and
Todd completely classified the finite complex reflection and published a list of all finite
irreducible complex reflection groups (up to conjugucy). Furthermore, Shaphard and Todd
determined the degree of the reflection groups, using the invariant theory of the corresponding
collineation groups in the primitive case. In (1967),Coxeter gave presentations for all the n-
dimensional finite reflection groups and presented number of graphs connected with complex
reflection groups in attempt to systematize the results of Shaphard and Todd.

In 1889, Roberts gave a structure of an arrangement as an arbitrary finite set of lines in the
plane and the number of regions that remained if we remove those lines from the plane was
calculated. The field of hyperplane arrangements becomes increasingly popular during the next
century. By a hyperplane arrangement (or for shorten arrangement) A, we mean a finite set of
hyperplanes of a finite dimensional vector space V. One of the most essential problems in the
topological studies in the field of arrangements is the computation of the homotopy type of the
complement of an arrangement, M(A) = V\ Uyeq H. The complement in a complex space had
been studied by Fadell,Fox and Neuwirth (1962), in a connection of the Braid arrangement
which forms a special kind of Coxeter arrangement A(S) that associated to the symmetric group
S, (i.e. A(S) the set of all reflecting hyperplanes related to a certain root system that produce the
Coxeter group S). They gave a presentation of the cohomology ring of the complement M (A(S))
as generators and relations.

In (1973), Brieskorn replaced the symmetric group and the Braid arrangement by a finite
Coxeter group G and the complexification of its reflection arrangement in order to generalized
the previous work and gave a presentation to the cohomological ring H*(M(A(G))) of the
complement M(A(G)).Orlik and Solomon (1980) generalized Brieskorn results to construct a
graded algebra A associated to any complex arrangement A and their description involves the
intersection lattice L(A) = {X € V|X = Ug H and B < A}of A which is partially orderedby the
inclusions and ranked by rk(X) = codim(X) = dim(V) — dim(X). They proved that A is
isomorphic to the cohomological ring H*(M(A)) of the complement M (A).

For a given total order <on the hyperplanesof A, a circuit C € A is a minimal (with
respect to inclusion) dependent set of A. We call C = C\H a broken circuit of C, if H is the
smallest hyperplane in C via <and by an NBC base B < A we mean B contains no broken
circuit.

Many basic facts about the linear arrangement A and their intersection boset L(A), are best
understand from the more general viewpoint of the matroid theory. A matroid is a pair M =
(A,A), where A is a finite set and A is a non-empty collection of subsets of A called independent
sets such that A forms a simplicial complex and every induced subcomplex of A is a pure, i.e. if
B c A, the maximal elements of A n 28 have the same cardinality, where 22 = {C € A |C <
B}. With a finite matroidM there associated several simplicial complexes that are interrelated in
an appealing way. Such complexes are: the G-complex A, the broken circuit complex NBCo(M)
and the reduced broken circuit complex NBC.(M) via a fixed ordering < of the underlying set A4
of M. In particular, the broken circuit complex carries the chromatic properties of M. The
homology of geometric lattice complexes was firstly determined by Folkman (1966). Orlik and
Solomon in (1980), showed that the cohomology ring of the complement of a complex
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arrangement of hyperplanes can be described entirely in terms of the order homology of the
geometric lattice of intersections. Accordingly, the geometric lattice homology is related to
interesting applications of matroids within mathematics.

The aim of this paper is to study the reflection matroids of some complex reflection
arrangements. This study will organize as follows:

¢ In section one we review some basic facts that we needed in our work.

e The hypersolvable class of arrangements, was originally introduced by Jambu and Papadima in (
1998), and (2002) as a generalization of supersolvable (Stanly) class (1972). In section one, we
looked more closely at a construction given in [1] of a partition of an arrangement A is called
"hypersolvabe partitions™,[] = ([T1,I1z, ---»I1z), in order to apply its structure on the
supersolvable Coxeter arrangements.

e The Sections (2) and (3) are devoted to construct the reflection matroidsof (A(Iz(n)),n =
3,4) (A(Ay),n = 3), (A(B,),n = 3), (A(C,),n = 3), (A(D,),n = 4), A(G24), A(Gas), A(Gae)
and A(G,7). Appendix (1), included a Maple program to compute the lattice intersection that
preserve the order that we fixed it to each one of their arrangements. Consequently, the G-
complex, the broken circuit complex, the reduced broken circuit complex and free minimal
resolution for each one of them are constructed. As well as, the Hilbert function and the h-vector
of those matroids are computed by using a Maple program given in appendix (2) and we use the
Maple program given in appendix (3) in order to compute the f-vector to the broken circuit
complexes of (A(L,(n)),n =3),(A(4,),n=3), (A(B,),n=3) and (A(C,),n=3) as an
application to theorem(1.3) that given in [3]. We mentioned that the programs in appendix (2)
and (3) were introducedfirstly by Fadhil (2012).

(1) Preliminaries:

In this section we review some basic definitions and facts of the notion of "Matroids"”, so we
will start with the following:

Definition (1.1): Al-Ta'ai et al .(2010)

A "finite" matroid is a pair M = (4,A), where A is a finite set and A is a collection of
subsets of A, satisfying the following axioms:
1. Ais a non-empty (abstract) simplicial complex, i.e. A= @ and if A’ € A and A" c A’, then
A" € A.
2. Every induced sub-complex of A is a pure, i.e. if B € A, the maximal elements of A n 25
have the same cardinality, where 22 = {C € A |C < B}.
The members of A are called independent sets of the matroid, the facets is said to be the bases
of the matroid and we write ve M to mean v € A. We call A a G-complex. Two
matroidsM; = (41,4,) and M, = (4,,A,) are said to be isomorphic if there exists a
bijectiony : A; — A, such that {vy, ..., v} € Ay if, and only if, {Y(vy), ..., Y(vi)} € A,.
A circuit € € A is a minimal dependent set, but C becomes independent when we
remove any point from it. If B € A, we define the rank of B by;

rk(B) = max{IB’I|B' C B and B' € A}.
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In particular, rk(¢) = 0 and we will define the following:

1.The rank of the matroidM itself by rk(M) = rk(4A) = dim(A) + 1 = |F|, where F is a
facet of M. The level of a matroid is [(M) = |A| — rk(M)-1.

2. A k-flat of M is a maximal subset of rank k. It has been noticed that, if B and B’ are flats of
a matroid M, then so is BNB’. We can defined the closure B of a subset B € A to be the
smallest flat containing B, i.e. B = Nias pop B'-

3.L(M)for a matroid M to be the poset of flats of M, ordered by inclusions. Since L(M) has a
top element A4, then L(M) is a lattice, which we call the lattice of flats of M. It has been
noticed that, L(M) has a unique minimal element 0 = @.

4. Define the characteristic polynomial y,,(t) of M, by;

() = Txeran (0, x) 7
whereu denotes the Mobius function of L(M) and r = rk(M).

5.We say A factors, if A has a partition I1 = (I14, 1) such that A = (A; * A,), where for
i = 1,2, the induced subcomplexes A;= A|Il; = {S € A|S € II;} is the restriction of A to
I1; and the join A; * A,= {S; U S,|S; € A; andS, € A,}. We say Afactors completely if A
has a partition IT = (I1y, ..., IT,) into » nonempty sets such that A is a multiplejoin of the
induced sub-complexes A = A; *---x A,, where A; is discrete 0-dimensional, i.e. A;=
@uf{{v}ven}for1<i<r,

6. The f-vector of A is a vector of integers f = (fy, f1, .-, f5), Where for 0 < k < §, f; is the
number of the faces of A have k + 1 elements. It has been noticed that, f, = |A| = n. For a
positive integers m, define:

Hm) =Y fi ("70);

where for m = 0 define H(A,0) = 1. Define the h-vector of A to be the vector of integers
h = (h4, ..., h,) satisfied the following:

(1+hqx+---+h,-x")
A-x)r

;.rol=0 H(A, m)xm =

Knowing the f-vector of A is equivalent to know its h-vector.

7.The Euler characteristic of A is;
XA =—f 1+ fo—fi+t=ED"1f,(-1), where f_; = 1.

Definition (1.2): Al-Ta'ai et al .(2010)

For a matroidM = (4, A), with |A| = n, we can define a linear ordering on the vertices
by making A = {1,2,...,n}and 1 < 2 < --- < n. We call a matroid with this linear ordering <
an ordered matroid or oriented matroid and we denoted it by M,. Let us agree that every
subset of A will linearly ordered by the lexicographic order (DegLex). It has been noticed
that, the =-lexicographic order on the facets of A forms a shelling of A. In particular, all
matroid complexes are shellable.
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A Dbroken circuit of an ordered matroidMg, is a set C = C\v, where C is a circuit and v
is the minimal element of C via <. The broken circuit complex (or BC-complex) which is
defined to be the simplicial complex;

NBC(M) = {B € A | B contains no broken circuit}.
For0 <k < rk(M), set;
NBCE(M) = {B € A | B contains no broken circuit and |B| = k + 1};

to be the k™- skeleton of NBCo(M). It has been noticed that, if /2 = (f2, f2, ..., f2,) be the
f-vector of NBCL(M), then |NBCE(M)| = £ and;

XM(t) = _Altr —fOAtr_l + -+ (_1)TfrA_1, Wheref_Al =1.

The family of all subsets of A/{1} that contains no broken circuits is called the reduced
broken circuit complex of M5 and denoted byNBC,(M).

Definition (1.3): Al-Ta'ai (2010)and Stanley(1974)

Let A be a "finite" (abstract) simplicial complex with vertex set A = {v4, ..., v, }. Let I,
be the homogenous ideal of the polynomial algebra in n-indeterminate, A = K[xq, ..., X, ]
generated by all squarefree monomials x;, . .... x;, , such that {xil, ...,xik} is non-faces of A, i.e.
1,is generated by the "minimal"” non-faces of A. The ring Ay = A/I, is a standard K-algebra.
As a graded algebra A, = )., _o AY, the Hilbert function H(A,, m) of A, is defined by
H(Aj,m) = dimifA) and the krull dimension of A, which is denoted by dimifA,) is one
more than the maximal integer m such that H(A,, m) # 0. The important point to note here
is, H(A,,m) = H(A,m). If;

0—> M, > M,y — - — My — Ay —0,

is the minimal finite free resolution of A,, the j™-Betti number of A, is denoted by 5;(A,) =
B: = rk(M;). The integer h which represents the largest integer i such that B; # 0 is the
homological dimension of A, denoted by hd,,. If hdy, =n — dimifA,), we call A, a
Cohen-Macaulay ring and ﬁhdAA is called the type of A,. Since A is a G-complex, then for
0 <k < rk(M);

Br(Ap) = By = ZflatsX €L, (M) |u(ﬁ,x)|;

where|u(0, x)| represents the length of the maximal chain from minimal flat 0 into X of
L(M).

Theorem (Bjorner) (1.1): Bjorner(1992)

For an ordered matroidM, on a set A, the simplicial complexes A, NBC(M), and
NBC (M) have a canonical set of basic cycles for the reduced homology group,
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~ _(Z1 if d =dimA=rk(M)—1,
Ha(8) = {0 if d % dimA= k(M) — 1

whereq = (—1)" x(4) is equal the number of facets F of A such that R(F) = F.
Theorem (Ziegler) (1.2): Bjorner(1992)

Let M, be an ordered matroid of rank . Then NBC(M) has top-dimensional reduced
homology;

H._,(NBC(MJ)) = 7F™;
where (M) = (=1)" x(NBC<(M)).
Definition (1.4): Al-Ta'ai (2010)

Let A= {H4,..,H,} be a central r-arrangement of hyperplanes over C. Define a
matroid M, = (A4, A) on A by letting A to be the collection of all independent subarrangements
of A. It has been noticed that, L(A) = L(M,). Viaa linear ordering <, let:

NBCo(M,) = {B € A | B contains no broken circuit};

be the NBC-complex of M,. Then;
XMy t) = _Altr — fOAtr_l + 4 (_1)rfrA—1;

wherer =rk(A) =6+ 1 and f2 = (f&, f2 ... f*) be the f-vector of NBC.(M,) and
f-1 = 1. Notice that,h, = B m,)(An) = fA , is the type of the Cohen-Macaulay ring A,
and it has a minimal free resolution;

0—M, —-M,_{ — - —My— Ay —0;
where for 0 < k < r, vk(M,) = B (4,) = INBCE(M)| = 2.
Definitions (1.5): Orlik and Terao(1992)

Let IT = (I1y, ..., I1,.) be a partition of a central £- arrangement A. Then ;

1.1fd; = ||, for1 <i<r.Wecalld = (dy, ..., d,) the exponent vector of 1.

2. Let X € L(A) and 11 = (I, ..., 1) be a partition ofA. Then the inducedpartitionIly is
partition of Ay with blocks is the non-empty sub-setsIl; N Ay, 1 <i <.

3. Ilis said to be of an arrangement A is said to be independent, if for every choice of
hyperplanes H; € I; forl <i <r, the resulting r-hyperplanes are independent, i.e.
rk{H,n..Nn H.} =r.

4. Call S = {H,, ..., H} a k-section of I if, for eachl <i < k,H; € II,,, ,where 1 <m; <
- <my <r. It has been noticed that, if II is independent, then all its k-sections are
independent. By Sk (4) we denotethe set of all k-sectionsofllandSy (4) = U%_; Sk (A).

5. A partition IT = (I, ..., I1,.) of A is said to be niceif;
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I.IT is independent, and
ii.IfX € L(A)\V. Then the induced partition I1y contains a block that is a singleton.

Definition (1.6): Ali (2007)

Let A be a central £-arrangement. A partition II = (IIy,... ,I1,) of A is said to be
hypersolvaplewith length #(A) = r, exponent vector,(or d-vector), d = (dy, ..., d,),(where
d, = | I1; | for, 1 < i < r) and denoted by Hp II, if| I | =1 (i.e. I1; is a singleton) and for
fixed 2 < j < r, II; satisfies the following properties:

(J™Closed property ofIT):For any Hy,H, €1 U ... U [;, there is no hyperplaneH € I1; ,; U
... UIl, such that rk{H,,H,,H} = 2.

(J™ Complete property of IT):For each H;,H, € [1;, there exists H € I1; U ... U II;_; such that
rk{H;, H,, H} = 2. It has been noticed that, from closed property of I; _;, the hyperplanene H
is unige and we will denote it byH = Hy 5.

(Jt Solvable property ofl):If Hy, H,, H; € [l;, then the hyperplanes, H ,, Hy 3, Hy3 € I1; U
.o U Hj—ll eithel’ H1,2 = H1,3 = H2,3 Orrk{Hljz,Hll3,H2,3} = 2

For 1 < j <, we define the rank of a block II; of IT as rk(Il;) = rk (ﬂHEHlU._.Un]_H). We

call TI; singular if rk(II;) = rk(I;_;) and we call it non-singular otherwise. An Hp II is said
to be supersolvable and denoted by Sp, if it is independent. Observe that rk(I1;_;) < rk(II;)
in general, and if r = 3, then every II; ,I1;,, IT;, € Il are independent, where 1 < i; < i, <
i3 < r (see Coxeter(1949))

Proposition (1.1): Al-Ta'ai (2010)

Let A be an essential central complex #-arrangement. Then A is a hypersolvable
(supersolvable) if, and only if, A has an HP (SP), IT1 = (11, ..., I1,).

Definition (1.7): Al-Ta'ai(2010)

The matroidM, is said to be hypersolvable (supersolvable) matroid if, A is
hypersolvable (supersolvable) arrangement.

If A is hypersolvable r-arrangement with Hp IT = (114, ..., I1,) and d-vectord = (dq, ..., d;).
Let NBCo(M,) be the NBC-complex of the hypersolvable matroid M, via the hypersolvable
ordering < with f-vector, f2 = (f& 2, ..., ). That is, we shall give the no broken circuit
subarrangements the degree lexicographic (DeglLex) order with respect the hypersolvable
ordering. Where, by NBCo(My)|; = {S € NBCo(My)| S < I1;} we denote the restriction of
NBCs(MtoII;, for1 <i < 4.

For 1<k <¢, let SK(A) ={S< A|Sisa k — section of [T} and let S;(A)|, = {{H}| H €
I, } be the discrete 0-dimensional simplicial complex. LetSy; (4) = Sy (A)]q * -+ * Sy (A4)|, be
the multiple join of the complexes Sy (A)|4, ..., Sy (A)],. That is Sy(4) = Ui_, Sk(A). We
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call S;(A) a hypersolvable partition complex of the matroidM, via the hypersolvable
ordering. It has been noticed that, in general S;;(A4) need not to be a subcomplex of the G-
complex A of the matroid S; (A). The important point to know here NBCo(My) |, = S (A) |k,
for1 <k < ¢, but NBC.(M,) and Sy; (A) need not to be equal in general.

Theorem (1.3): Al-Ta'ai(2010)

Let A be a hypersolvable arrangement with HpIl = (114, ..., I1,) and exponent vector
d = (d4, ..., dp), via a fix hypersolvable ordering < on G. Then the following statements are
equivalent:
1. Ais supersolvable.
2.NBC4(My) = Sy (A), i.e.; NBCo(My) = S (A)| *+++* Sy (A)], is factored completely and;

ka—1 = fl_zkl fz_zkzir}rl ---kazik_lﬂ dildiz ---dik,
forl <k < #,where f2 = (f& 2, ... f~,) be the f-vector of NBCo(M,) and y,(t) =
xum, () = At — Rt e+ (CDEA
WherEf_Al =1 andhr = ﬁrk(MA)(AA) = f{’A—l =dyd;3 ...dy;

is the type of the Cohen-Macaulay ring A, and it has a minimal free resolution,

0> My, —>My_y — - — My — Ay — 0,
where for 0 < k < ¢, rk(M,) = B (A)) = INBCE(M)| = f2 ;.
(2) SomeCoxeter Reflection Matroids

In this section, we will compute theG-complex, the broken circuit complex and the
reduced broken circuit complex for the complexification of the Coxeterarrangements
(A(I,(m)),m = 4) ,(A(4,),n = 3), (A(By),n =3), (A(C,),n =3), (A(D,),n=4). For
the defining polynomials of the Coxeter groups that we used in this section, see [4] and
[7].We mentioned that, for simplicity we will write 1,2,3,... instead of the hyperplanes
H,, H,, Hs, ... respectively, of the structure of G-complex.

(2.1): The ReflectionMatroid of A(I,(m)), m = 4:

Let V = R™. Define D,, = I,(m) to be a dihederal group of symmetries of regular
Polgon incuding both reflections and rotations. A regular Polgon with m —sides has 2m

different symmetries, m-rotations; (through multiples fn—") and m-reflections; (about the

digonals of polygon). For m = 4, the dihederal group ©, of the symmetries of the sequre as
shown in figure (2.1):

'

Figure(2.1)
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1 2 34y _ _ (12 34\ _
2 1 13)=AD6ED 5= 3 5))=09e3),

S3 = (1 2 34) =(13) and S, = (1 2 34) = (2 4) which produce four rotations,

has four reflections, S; :(

3 2 14 1 4 32
12 (2 Bne( ] Wmnn(l 2 s,

is a subgroup of the 4™ symmetric group S, and its Coxeter arrangement A(D,) has a
defining polynomial defined as follows:

QA(Dy)) = (1 —x2 +x3 — x4) (1 — x4 + X2 — x3) (1 — x3) (X2 — X4).

In C*, the complexification of A(D,) is the complex arrangementA¢(D,) which contains the
four complex hyperplanes related to the reflections S, S,, S3 and Sy;

Hécl = ker{x; — x; + x3 — x4}, H§C2 = ker{x; — x4 + x; — x3},
Hg, = ker{x; —x3}and Hg, = ker{x; —x,}.

Ac(Dy) is a non-essential supersolvable arrangement  with Sp,Il =
({Hs }.{HS, ), {HS,, Hg, })and exponent vector d = (1,1,2). The matriod of A(Dy)is Ma(p,) =
(A(D,), D), where A= UZ_, A such that;

Ao= {[1],[2], 3], [41}, A= {[1,2],[1,3],[1,4], [2,3], [2,4], [3,4]}and;
A,={[1,2,3],[1,2,4],[1,3,4]}.That is the f-vector of Ais f = (4,6,3). By easy calculation
(see appendix (2)), we have H(A,0) = 1H(A,1) = 4H(A,2) =10, H(A3) =19, H(A4) =
31,... and the h-vector of A is h = (1,1,1).The rank of M ( A(D,)) isTk( A(D,)) =
dim(A) + 1 = 3. By applying theorem (1.3), we have NBCo(My(o,)) = Su(A(Dy)), i

NBCo(Myo,)) = Su(AD))|1 * Su(A®D))2 * Su(A(D4)) I3 = {[11} = {[2]} * {[3], [4]};

andthe f —vector of NBC(M) is f* = (1,4,5,2). That is,xu,,,,(t) = t° — 4t* + 5t — 2 and
the Cohen-Macaulay ring A, = ¥3_o A Am) = AL @ A @ ALY @ AL @ A3l @ ...hastype
hz = B3(Ap) = fZA = 2and a minimal free resolution;

0> M2 > M3 > M} > M- A, >0
that completely determined by the f-vector of NBC5(My(s,)) and the homological dimension
of Ay ishdy, =n—dimA, =4 — 3 = 1.Moreover, the reduced broken circuit complex will

be, NBCo(Ma(o,)) = {[2]1} * {[3], [4]}, and fromapplication of the theorems (1.1) and (1.2),
we have;

1 ifd=2

Hq(d) = {o ifd 2

and; H; (W(MA(M))) =1;

where,B(MA(m)) = (_1)3X(WS(MA(5D4))) and x (WQ(MA(:D‘*))) =0.
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(2.2) The ReflectionMatroidOf A(4,),n > 3:

The group 4,, = S,,+1, Where S,,; is the (n + 1)**-symmetric group of O(n + 1,R) of
n+ 1 x n + 1 orthogonal matrices. Make any permutation 7 acts on R**! by permuting the
standared basis ey, e,, ..., e,4+1. In particular, the transposition(i j), 1<i<j<n+1 acts
on R**! by sending e; — g in to its negative —(e; — ¢;) and fixing pointwise the orthogonal
complement He—e, = {(x1) s Xn11); x; = %3} It is known that, the symmetric group S,
generated by the transpositions {(i j), 1 <i <j <n+ 1}. S0 S, ;4 is a Coxeter group and is
the corresponding reflection group. Thus, A(4,,) = {Hel._ej [1<i<j<n+ 1} is a Coxeter
arrangement, where;

He,—e, ={(xq, oo, X 11)| x4 —x}1<1<] <n+1.

Its complexification is the Braid arrangment Ac(4,) of C**! that is a non-essential
supersolvable arrangement with Sp;

= ({ e1— 92} {Hel —e3’ 6’2 93} { €1=en+1’ " écn_en+1}).

and exponent vector d = (dy, ...,d,),= (1,2,...,n). If the Matriod of Ac(4,)isMy, )=
(A(4,),4), then the rank of rk(My )) = rk(A(4,)) = dim(A) + 1 =n. By applying
theorem (1.3), we haveNBCa(Mys ) = Sn(A(4,)), ie;

NBCs(Mya,)) = Su(A(A4:)) 1 *+-* Sn(A(4)) |, = {[11} = {[2], [3]} * ... * {222 —

7,..,nn—12}
A _ yn—k yn—k+1 n .
andfk_l - ll=1 i2=i1+1 ikzik—1+1 dl1d12 dik’ for 1 S k S Tl,

wheref? = (f£, ..., f2,) be the f-vector of NBCS(MA(AH)). Then;
Xaa)(®) = Xmy, () = — fot" e (CD i

where f24 = 1. hy = By, p(Ba) = fit1 = dads ... d, = nlis the type of the Cohen-
Macaulay ring A, and it has a minimal free resolution;

0—M, > M, { —-—>My— Ay, —0;
where for 0 < k < n, rk(M,) = B (Ay) = [NBCE(Mya,)| = Fr1.
For n = 3, the complexification of A(A5) is supersolvable with Sp;
= ({Hf, 0, b {HE s By b A s HYy -y By, }) = ((13,{2,3}, {45,6}).
Thus the matroidMy4,) = (A(43),4), is defined by letting;

A= UZ_, Ay, where Ag= {[1], ..., [6]}, A= {[i,j] 1 <i<j < 6}and;
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M={[i,j, k]l 1 <i<j<k<6}\{[123][145],[246] [356]}.

That is the f-vector of A isf = (6,15,16) and by easy Maple calculation (see appendix (2)),
we have H(A0) = 1H(A,1) = 6H(A2) = 21, H(A,3) =52, H(A4) =99,... and the h-
vector of Aish = (1,3,6,6).The BC-complex of A(43)is;

NBCo(Macay)) = Su(A(43))11 * Su(A(43)12 * Su(A(43)13
={[11} = {[2], 31} * {[4], [5], [6]},
and the f-vector of NBCo(My(ay)) is £ = (1,6,11,6) and;
XMy, = =-DE-2(-3) = t3 —6t% + 11t — 6.
The type of the Cohen-Macaulay ring A, = X2_o Ar®m) = AL @ AS @ A%l @ AT @
A2 @ ... ishy = B5(A,) = f£ = 3! = 6 and it has a minimal free resolution;

0> ME - Mt > Ml - M} - A, 0;
and the homological dimension of A, is hdy, = n —dim A, = 3.The reduced broken circuit
of Mya,) is given by;

NBCo(M) = Sy (A(43))]2 * Sn(A(43))15 = {[2], [31} * {[4], [5], [6]};

and as an application of the theorems (1.1) and (1.2), we have;

7ooay = (28 ifd =2 7 (NEr ~ 72.
AGEIR ilfgi Zand; Ay (NBC(Maa); Z) = 72

where, B(M) = (—1)3y(NBCs(Mac,))) and )((NBCS(MA(Ag))) —_—
(2.3) The Reflection Matroidof A(B,),n > 2:

Let V = R" and let ey, ey, ..., e, be the standard basis for R". The reflections S, that sending
an e; to its negative —e; and fixing all other¢;, 1 < i # j <n,ie. S, :V — V defined by :

_ —€ , ] =1
Sez(ej) = { e ) j#i
generte a group of order 2™ isomorphic to (%)" which intersects the nt*-symmetric group S,
trivially and normalized by S,,. Notice that, the reflection hyperplanes H,, that orthogonal to
e; is H,, = (X1, .., X, Xi 41, .. X ) — hyperplane and the Coxeter arrangment A((%)”) will be
the Boolean arrangment which is essential supersolvable arrangement and its Sp has exponent
vectord = (1, ...,1).
As given in (3.2), the symetric group A,,_; = S,, acts onR" by sending e; — ¢; to its negative

e.

; —e;, 1 <i<j<n. The semi direct product of A,_; and the group (%)" produce a
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reflection group B, = (%)" o« A,_q, of order 2"n!. In general, Ac¢(B,) is an essential
supersolvable arrangement with supersolvable partition IT = (I1y, ..., I1,,), where;

= {He JU{He e, 1< i</} = {0 =001 =, 1 =3} .. ()

and || =, for j =1,..,n, i.e. Ac(B,) has d-vector d = (1,2,..,n). However, we can
applying theorem (1.3), in order to compute its G-complex, broken circuit complex, as well as
its minimal free resolution can be computed. Via the SpIl we haveNBCo(My,)) =

Su(A(B,)), i.e. NBCa(Mycs,)) = Sn(A(B))|1 *+* Su(A(B,))l,is factored completely and;
ka—l = XMA(Bn) ?1_=kl ?z;lij-ll-l ?k=ik—1+1 di1 diz dik1 for 1 < k < n,

wheref2 = (ff, f2, ..., f;,2.1) be the f-vector of NBCo(Mys,) andxacz,(0) = () =
f_Altn _fOAtn_l + -+ (_1)71an_11 where f_Al = 1hn = ﬁrk(MA(Bn))(AA) = an—l = n!lis the
type of the Cohen-Macaulay ring A, and it has a minimal free resolution,

0—M,—>M,_ 1 ——>My—A,—0,
where for 0 < k < n, vk(My) = B (Ay) = INBCE(M)| = f2,.

For n = 3, the MatriodM,,) = (A(B3),A= U2_,A,) of the complexification ofA(B3) is
given as;

Ao={[1],[2], 3], [4], [5] [6]1}.A:= {[,j], 1 <@ <j < 9%and;
A
=2{[1,2,3], [1,2,5],[1,2,6],[1,3,4],[1,3,6],[1,4,5],[1,4,6],[1,5,6],[2,3,4], [2,3,5],[2,4,5], [2,4,6],
[2,5,6],[3,4,5],[3,4,6],[3,5,6]}. That is the f-vector of A is f = (6,15,16) and by easy
Maple calculation (see appendix (2)), we have H(A,0) =1H(A1) = 6H(A2) = 21,
H(A3) =52, H(A4) =99,... and the h-vector of A is h = (1,3,6,6). the rank ofMy sz,
istk(My(s,)) = Tk(A(B3)) = dim(A) + 1 = 3. Ac(B3)has
Sp.I1 = ({H{},{HS, HS}, {HE, HE, HEY). As illsutration of theorem (1.3) theBC -complex of
A(B3) is;

NBC(MA(B3)) = Sq (A(B3))|1 * Sy (A(B3))|2 * Sy (A(B3))|3

={[11} = {I2], 31} * {[4], [5]. [6]}-
The f-vector of NBC(My(g,)) is f* = (1,6,11,6) and;
Xy, (O = t3 —6t% + 11t — 6.
The type of the Cohen-Macaulay ring
Ay =TrooAn W = A @A O AT BAT DAY D ..,
Ish; = B3(Ay) = sz = 6 and it has a minimal free resolution;

0> M > Mt > M > Ml >A,-0;
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and its homological dimension is hd,, = n — dimA, = 6 — 3 = 3. The reduced broken
circuit NBCo(Myp,))of Myp,)is;

NBCo(My(s,)) = Su(A(B3))2 * Su(A(B3))1s = {[2], [31} = {[4], [5], [6]}.
and as an application of the theorems (1.1) and (1.2), we have;

_ 6 g — -
A = ilfflei Zand; Ay (NBC(Mas,)); Z) = T2

where, f(M) = (—1)3 x(NBC2(Ma,)) and x (NBCa(Macs,))) = —2.

(2.4) The Reflection Matroidof A(C,),n > 3:

Let V = R" and let ey, ey, ..., e, be the standard basis for R"™. The reflections S, that
sending an 2e; to its negative —2e; and fixing all other 2¢;, 1 < i # j < n and the reflections
Sei—e; sending e; — ¢; 1o its negative ¢, —e;, 1 < i < j < n, define The reflection group C,.
So, its Coxeter arrangement A(C,,) has a complexification A¢(C,) defined as Q(Ac¢(C,))=
2"Q(Ac(By)). Therefore, Ac(C,) and Ac(B,) have the same lattice. Thus they have
isomorphic Matroids, i.e.My(¢,) = (A(C3), A= Uj—o Ar) = My, = (A(B3), A= Ui—o Ap).

(2.5)The Reflection Matroid of A (D,,), n = 4:

A subgroup D, of index 2 of the reflection group of type B, is also a reflection that

generated by reflections Ses+e; that sending e; + ¢; into —(e; +¢;), where i # j and fixing
pointwise the orthogonal hypeplane Hei+ejwhen i = j. The Coxeter arrangement A(D,,) has a

complexification A¢(D,) that contains n(n — 1) complex hyperplanes defined by the
following defining polynomial;

Q(Ac(Dy)) = Tisicjn(x: £ x7).

Now for n = 4 the defining polynomial of A(D,) is;

Q(A(DY)) = (31 — x2) (x1 — x3) (1 — x4) (37 — x3) (X2 — x4) (3 — X4)
(c1 + x2) (1 + x3) (g + x4) (22 + x3) (02 + x4) (X3 + x4).

The matroidMyp,,= (A(D,) ,A) hasf-vector of A is, f = (12,66,204,315) and by an easy
Maple calculation (see appendix(2)), we have H(A,0) =1, H(A,1) =12, H(A,2) = 78,
H(A,3) =348, H(A4) = 1137, ... and theh-vector of A is h = (1,8,36,104,66). The NBC-
basis of A(Ds) is defined by NBC(Myp,)) = Ui—o NBCy (Ma(p,)) Withf-vector of
NBCs(Myp,)) is f2 = (1,12,50,60,21)andyy,, ,, (t) = t* — 12t + 50t* — 60t + 21.The

type of the Cohen-Macaulay ring
Ay =32, vk (Am) _ A%) EBA%Z @Aég EBA3348 EBA};‘KW D ..,

m

is hy = B4(Ay) = f£ = 21 and it has a minimal free resolution;
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0 Mt > M - M3° - M{Z - Mj - Ay - 0;
is completely determines by f2, and the homological dimension of A, is hdy, =n —

dim A, = 8. The f-vector of the reduced broken circuit NBCa(Ma(p,))0f Ma(p,), Will be
fWS(MA(M)) = (11,39,21). Finally, fromapplication of the theorems (1.1) and (1.2), we

have;

_ 166  ic 7 _ -
H,(0,) = {Zo iflgd;t 33and;H2(NBC(MA(D4));Z) =~ 78:

where, B(M) = (—1)*x(NBCo(Ma(p,)) and x (N_MS(MA(DU)) =8

(3) The Complex Reflection Matroids

This section consists four parts.Each one of them, study the reflection Matroid for one
of the complex reflection arrangementsA(G,4),A(G2s5),A(Go)andA(G,7). Moreover,they
provide the detailed expositions for the constructions of theirCohen-Macaulay rings and their
minimal free resolutions.

(3.1): The Complex Reflection MatroidA(G,4):

The complex reflection group G,, < U(C3) = (3,C) c GL(3,C) of order 336, is not
the complexification of real group [23].The corresponding reflection arrangement A(G,4) has
(21) hyperplanes and its defining polynomialis given by:

A(Gza) = x129%3 [1i j k=1,2,3(Cx; + %) (Bx; + %5 + x.);

whereg is the root of the equation (t2 —t+2) =0, ie. B = %(1 — i+/7) and E:_?l (1+
iv/7). We will order the hyperplanesH; = Ker(ay,), 1 < i <21, as shown in the following
table:

Hiix; =0 Hy:x, =0 H3:x3 =0

Hy:x1+x, =0 Hs:x1 +x3=0 Hg:x; +x3 =0

H;:x1 —x, =0 Hg:x; —x3=0 Hg:xy; —x3 =0

Hig: fx1 +x, +x3=0 Hi1:Bx; —x,+x3=0 Hip:Bx1+ x;—x3=0

H13:ﬂx1—x2—x3=0 H14:ﬁX2+X1+X3=O H15:IBX2—X1+X3=O

H16:BXZ+X1—X3:O H17:ﬁx2—xl_X3:O ng:ﬁX3+x1+x2:0

Hig: Bx3 — x1 +x3 =0 Hyy:Bxz3+ x1 —x, =0 | Hy:Bxz3+ x1—x, =0

Table (3.1): The hyperplane of A(G24)

The matroidMA(Gm: ( A(Gyy) ,A) on A(Gyy)hasf-vector of Ais f = (21,210,1162), and by

easy Maple calculation (see appendix (2)), we have H(A,0) =1, H(A1) = 21, H(A2) =
231, H(A,3) = 1603, H(A,4) = 4137,... and the h-vector of Ais h = (1,18,171,972).The
rank of rk(My,,)) = 7k(A(G24)) = dim(A) + 1 =3. The broken circuit complex of
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A(Gz)have a structure  NBC(My,,)) = Ui—o NBCy (Ma(,,)) Withf —vectorisf? =
(1,21,119,99) and:

XMA(G24)(t) =t3 —21t? + 119t — 99.

The type of the Cohen-Macaulay ringA, = 3% _o A< m) = AL @ A2 @ AZ3! @ AL @
A7 @ Lis hy = B3(4,) = f," = 99 and it has a minimal free resolution;

0 - M3° - M9 - M2t > M} > A, - 0;
and the homological dimension of A, is hdy, =n —dimA, = 21 — 3 = 18. The reduced
broken circuit NBCs(My(g,,)) Of My, has f-vector, fm(MA(G“)) = (20,99). Thus,from
application of the theorems (1.1) and (1.2), we have;

ooy (272 ifd =2, . e g
A = %, if‘ddi , 2and; i (NBC (Mae,,)); 2) = 2%

where, B(M) = (=1)* x(NBCa(My(,,)) andy (NBCS.(MA(GM))) = —80.
(3.2): The Complex Reflection Matroidof A(G,5):

The defining polynomial of A( Gy5) is;
Q(A(G23)) = xyz o2 (x + @'y + w 2), (see [17]);

2mi

where w = e’3". We will order the hyperplanes H; = Ker(ay,), 1 < i < 21, as shown in the
following table,see AL- ALeyawee(2005):

Hi: x=0 Hy: y=20 Hy: z=0

H: x+y+z=0 He: x+y+wz=0 Hy: x+y+w?z=0
H: x+wy+z=0 Hg: x+wy+wz=0 Hy: x + wy + w?z=0
Hyo: x+w’y+z=0 |Hy:x+o’y+wz=0 |Hpy x+o’y+w?z=0

Table (3.2): The hyperplanesof A(G,5)
The MatriodMy g,y = (A(G2s),A)hasf-vector  ofA is f = (12,66,184).By easy Maple
calculation (see appendix (2)), we have H(A0)=1, H(A1)= 12, H(A22) =78,
H(A,3) =328, H(A4) = 762, ... and the h-vector of A is h = (1,9,45,129). The broken
circuit complex of A(G,5) was computedby using appendix (1) as NBC(MA(GZS)) =
Ufi=o NBC,,(Ma(s,)) Withf-vector of NBC(M) is f*=(1,12,39,28)and yy(t) =t —
12t% + 39t — 28. The type of the Cohen-Macaulay ring A, = Y% _ ATF@m) = AL @ ALZ @
AR DA DAL D ..ishy = B3(4,) = fL° = 28 and it has a minimal free resolution;
0> M2 -5 M3 > MP? > M} > A,—0;
with homological dimension of A, is hdy, =n —dimA, = 12 — 3 = 9. We computed the

reduced broken circuit NBCo(My(g,5))0f  Myg,sy.and it has f-vector, fWCs(MA(GZS)) =
(1,11,28). However,
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_ 129 67 _ -
m@ ={"" 1= 2and 1, (NBC(Mcc,0): 2) = 7%

where, B(Ma(g,s)) = (=1)3x(NBCo(My(6,s))) and X(NBCs(MA(st))) = —18.
(3.3) The Complex Reflection Matroidof A(G):

The defining polynomial of A( Go) iS;
Q(A(G)) = (xyz[losij=(x + 'y + @/ 2)) (2 — y3) (23 = 2°)(y® — 2%), (see [17));

2mi

where w = e3". The hyperplanes of A(G,¢) will ordered as given in table (3.3):

Hi: x=0 Hy: y=0 Hy: z=0

Hy: x+y+z=0 Hs: x+y+wz=0 Hy: x+y+w?z=0
H;: x+wy+z=0 Hg: x+wy+wz=0 Hy: x + wy + w?z=0
Hyp: x+w?y+z=0 |Hj;: x+w?y+wz=0 |Hj x+w’y+w?z=0
Hysz:x—y=0 Huyx—wy=0 Hsx—w?y=0
Hegx—2z=0 H7; x—wz=0 Higx —w?z=0
Hyg:y—2z=0 Hyy—wz=0 Hy 'y — w?z=0

Table (3.3): The hyperplane arrangement of G4

The matroidMy ¢, )= (A(G26) ,A) on A(Gye) hasf-vector of Ais f = (21,210,1174), and by
easy Maple calculation (see appendix (2)), we have H(A,0) =1, H(A1) =21, H(A2) =
231, H(A,3) = 1615, H(A4) = 4173,... and the h-vector of Aish = (1,18,171,984). By
applying appendix one, the broken circuit complex of A(Gys) is determined as,
NBC(MA(G%)) = UiZO NBCk (MA(G%)) and the f'VeCtor of NBC(MA(GZ6)) iSfA =
(1,21,111,9D)and xu, () = t3 — 21t? + 111t — 91.The type of the Cohen-Macaulay
ring;Ay = X2_o A “m) = AL @ AT @ AP @ AP DAY O ..
ishs = B3(4,) = f,® = 87 and it has a minimal free resolution;

0 - M3t - M > M2 > M} - Ay > 0;
and the homological dimension of A, is hdy, =n — dimA, =21 -3 = 18.
The reduced broken circuit NBCs(Myg,))has f-vector, fm(MA(G%)) = (20,91),and as an
application of the theorems (1.1) and (1.2), we have;

Fooay o (I8 ifd =2, 1 & (rEs 72,
Ay = { 0 ity and Hi(NBC(My,,))iZ) = 27%

where, (My(6,q)) = (—1)*x(NBCs(My(,,))) and x (NBCs(Macgyg) ) = ~72
(3.4) The Complex Reflection GroupA(Ga7):

All the reflections of G, are of order 2, but they are not the complexification of a real
reflections. The corresponding reflection arrangement has "45" hyperplane and defined by:
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Q(A(G27)) =TTk (% £ 0x)(x; £yx + 2y2x;)(x £ wy?x + w?yxy)
(x; £ (1 — 0?y)x £ wxy);

2mi

where(i, j, k) is a cyclic permutation of (1 2 3), w =e3 and y is the root of the equation
t24+t—1=0, ie. y= %(—1 ++/5), (see Shephard and Todd (1954)). Therefore, the
hyperplanes of A(G,7) will orderd as given in table (3.4):

Hl:x:()

Hy:y=0

Hy;:z=0

Hy:y+wx =0

Hs:y—wx =0

H¢:z+wy =0

H; :z—wy=0

Hg:x+wz=0

Hy:x—wz=0

Hyp:x+yy+y*y=0

Hy :x—yy —y*y=0

Hy;'x +yy —y?z=0

Hyz:x—yy+y*z=0

Hy:y+yz+y*x=0

His:y —yz —y?x=0

Hig:y+yz—y*x=0

Hi7:y—yz+y*x=0

Hig: z +yx +y%y=0

Hig:z—yx—y*y =0

Hy :z+yx—y’y=0

Hy:z —yx + y2y=0

Hyy:x + (1 — w?y)y+yz =0

Hyz:x-(1 — w?y)y -wz=0

Hyy: x+(1 — 0?y)y - wz
=0

Hys:x — (1 — w?y)y +
wz=0

Hygy + (1 — w?y)z +
wx=0

Hy;y — (1 — w?y)z —
w=0

Hyg:y + (1 — w?y)z — w=0

Hyg'y — (1 — 0?y)z +
wx=0

Hyp:z+ (1 — w?y)x +
wy=0

Hy:z— (1 — 0?y)x —

Hy=z + (1 — 0?y)x —

Hy3:z— (1 — w?y)x +

wy=0 w=0 wy=0
Hsy i x + wy%y + w?yz S S S Hze:x + wy?y —
~ 0 H3s:x — wy*y — w*yz=0 wlyz =0
Hzo :y — wy%z —
Hy; i x —wy?y + w?yz =0 | Hyg'y + wy*z + w’yx=0 w%i/xzo !
: Z
Huoy + wy?z — w?yx=0 Hy 'y — wy?z+ 0’yx =0 I(;)I%Z)/)Z/ -l__ (6))/ x+

Hys i z — wy?x — wlyy Hy iz + wy?x1l — w?yy | Hys 2z — wy’x + 0?yy

Table (3.4) The hyperplane arrangement of A(G,7).

The matroidMyg,,y= (A(Gz7) ,A) on A(G,7)has f-vector of Ais f = (45,990,13290), and
by Maple calculation in appendix (2), we have H(A,0) =1, H(A1) =45, H(A2) =
1035, H(A3) = 15668, H(A4) =42885 ,... and the h-vector of A
ish = (1,42,903,12344,0). The broken circuit complex of Myc,,His  given

as,NBC(My(s,,)) = Ui—o NBCy (Ma(s,,y), Withf-vector, f2 = (1,45,519,475) and y (¢) =
t3 — 45t2 + 519t — 475. The type of the Cohen-Macaulay ring A,

Ay =Y%_, A’;:(Am) — A%) EBA‘{S EBA12035 EBA135668 @Aizsss D ..

ishs = B3(A,) = £, = 475 and it has the following minimal free resolution;

0> M7 - MY - MP® > M} - Ay > 0;
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and the homological dimension of A, is hd,, =n —dimA, =45 — 3 = 42. The reduced

broken circuit NBCs(Myg,,)) of My, has f-vector, fWCs(MA(am) = (1,44,475)and we

have;

~ 12344 c1 _ .
A= {7 47 Zand; Ty (NBC(Myco,y)): 2) = 797,

where, (My(z,,)) = (—1)*x(NBCs(My(s,,)) and x (NBCa(Macgyyy) ) = —432.
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Appendix (1): In the following Maple program we compute the intersection between any two
hyperplanes and among three hyperplanes by using the instruction "solve™ in order to
construct the whole intersection lattice of an arrangement of rank three. For general reference
in Maple programs, we refer the reader to Wright (2002).

>restart:

h(1):=(x1,x2,x3)->x1:
h(2):=(x1,x2,x3)->x2:
h(3):=(x1,x2,x3)->x3:

h(JA]):=(x1,x2,x3)->...:

k:=0:

for i from 1 to 20 do

for j from i+1 to 21 do

k:=k+1:

Ai(Kk):=i;

Aj(K):=j;
d(k):=solve({h(i)(x1,x2,x3),h(j)(x1,x2,x3)},[x1,x2,x3]);
od;

od;

for z from 1 to k do

A:= vector [row] ([Ai(2),Aj(2)]);

d(2);

od;

k:=0:

for i from 1 to 19 do

for j from i+1 to 20 do

for m from j+1 to 21 do

k:=k+1:

Ai(k):=i;

Aj(k):=j;

Am(k):=m;
d(k):=solve({h(i)(x1,x2,x3),h(j)(x1,x2,x3),h(m)(x1,x2,x3)},[x,x2,X]);
od;

od;’

od;

for z from 1 to k do

A:= vector [row] ([Ai(z),A}(z),Am(2)]);
d(2);

od;
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ON SOME REFLECTION MATROIDS

Appendix (2):In the following Maple program, we give the values of the f-vector of any
simplicial complex Ain order to calculate the Hilbert function H (A, n) and the h-vector of A.
> restart:

with(PolynomialTools):

delta:=l: m:=100:

A=([ [fo - fr+a]D):

for i from 1 to delta+1 do

f[i-1]:=A[i];

od;

H(Delta,0):=1;

for n from 1 to m do
H(Delta,n):=sum(f[k]*(binomial(n-1,k)),k=0..delta);
od;

eq:=(1-x)"(delta+1):

eq[1]:=expand(eq):
eq[2]:=eq[1]*sum(H(Delta,k)*x"k,k=0..m):
eq[3]:=expand(eq[2]):

e:=CoefficientList(eq[3],X):

for i from 1to 10 do

h[i-1]:=€[i];

od;

Appendix (3):In the following program, we give the values of the d-vector of any
supersolvable arrangement in order to compute the f-vector to its broken circuit complex as
an application of theorem(1.3) in [3] :

> restart:

with(PolynomialTools):

I:=rk(A):

d:=[[d4, ..., d;]];

q[1]:=(t-1):

g[1]:=(t+1):

for i from 2 to | do

q[i]:=q[i-1]*(t-d[i]):

gli]:=g[i-1]*(t+d[i]):

od:

chi(A,t)=expand(q[l]);

eq[1]:=expand(g[l]):

e:=CoefficientList(eq[1],1):

for j from -1 to | do

f[j]™(Delta)=¢[l-j]:

od;

Presses inter to make the programs work.
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