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Abstract:

This paper is devoted to study the hypersolvabéplgc arrangements which are
originally introduced by Papadima and Suciu in 20@Btivated by our aim, we defined
the hypersolvable partition (which we denoted by,Hmd the hypersolvable ordering on
a graph, in order to introduce the existences @mthas necessary and sufficient
conditions of any graph to be hypersolvable. On thker hand, we studied the
hypersolvable graphic matroids and we introducedcamparison between the
hypersolvable graphic matroid which is not supessiole and its deformed supersolvable
matroid that obtained from Jambu's-Papadima’'s defoon method in 1998-2002.
Finally, this paper included some of applicationd dlustrations.
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(1) Introduction:

By a hyperplanéi in a finite dimensional vector spa&eover a fieldKk = R or C,
we mean an affine subspace of dimengidimV — 1 = r — 1) and an arrangemedtis
a finite collection of hyperplaned in V. The variety ofA is N(A) = Uy, H and its
complement isM(A) = V\ Uyecsa H. One of the essential problems in the topological
study of hyperplane arrangement is, how we carctthe combinatorics of which are
encoded in the associated intersection latic4), (which is forms a geometric lattice),
into topological information about the topologistiducture ofV/ (4).
In section (2), we review a brief summary of a owti‘hypersolvable arrangement”,
which was originally introduced by Jambu and Pamadin (1998, [8]) and (2002, [9]) as
a generalization of supersolvable (Stanly) cla832]1[21]). And we looked more closely
at the construction of a “hypersolvable partitiol”= (I, ..., I1,) on the hyperplanes of
a hypersolvable arrangeme#tthat induced from its hypersolvable analogue,fare
details see [2]. Naturally, the properties of tHecks of I1 define a hypersolvable
ordering on the hyperplanes afby the collinear relations which is denoted y(see
definition (2.4)). As well as a lot of various exples and fundamental results were
specified throughout this paper. Also, we review ttotion of NBC (no broken circuits)
of A. Where by a circui € A we mean a minimal (with respect to inclusion) dejsnt
set of hyperplanes and it has a corresponding brokeuit C = C \ {H}, whereH is the
smallest hyperplane i@ via a fixed ordering on the hyperplanesdofWe callB € A is
NBC base, if it contains no broken circuit. Notatteuch a set must be independent, then
we denoted by i-NBC base if|B| = i. by NBC,(A) we denoted the set of &tNBC
bases oA andNBC(A) = Uj,-; NBC,(4) .



The set of all the NBC bases #fforms an explicit bases of the cohomological
group ofM(A), we refer the reader to [13] as a general refereAt in her thesis [2],
studied the concept of "NBC bases" of any hypeedukr arrangement.

Jambu and Papadima in ([8] 1998 and [9] 2002) defnvertical deformation
method which deformed the hypersolvable arrangemenmtith s-singular blocks into
supersolvable arrangemedit= A; by one-parameter family of arrangemefds}cc in
C" x C* = C*, with preserving all the collinear relations 4f i.e. this method preserves

the lattice intersection pattern up to codimensiao #,(A) = {B §A| |B| <3} =
£,(A4). An algorithm to compute the deformed hypersolgadrangeme by using the
hypersolvable partition analogue was given in [®jth a comparison between the
structures of the NBC basesAfand the structures of the NBC based pivhich enables
us to see the deformed properties in each bloek of

Graph theory is a fundamental and powerful mathialatiool for a wide range of
applications. Many problems are arising in suchowe fields as chemistry, industrial and
electrical engineering, transportation planning,nagement, marketing, and education
can be posed as problems from graph theory [11{hénnetwork can be modeled by a
graph. Conversely, any graph can also be considesesl topological structure of some
interconnection network [10]. In section (3) we @pézed on the “hypersolvable graphs”
which is firstly defined by Papadima and Suciu20d2, [14]). In general, i is a finite
simple non oriented graph am, be the corresponding graphic arrangement, then the
correspondencé — A; gives a map from the class of finite simple noermted graphs
into the class of arrangements. This map may bd tesépull back" results concerning
arrangements to results concerning graphs. ThusviWeised this duality between the
notions “graphs” and “graphic arrangements” toeefflsome known results in the class of
hypersolvable arrangements into the class of hghabkle graphs by using hypersolvable
partitions analogue. In section (3) we define tlagiaom a "hypersolvable partition”
T = (1Y, %) of a graphG which inherits taG a fashion as a hypersolvable graph and we
proved that the existences of it as a necessarguaiffidient condition of any graph to be
hypersolvable.

Moreover, in section (3) we study certain specrhtral arrangements obtained
from finite non oriented graphs, they are calledphic arrangements and we specialized
on the hypersolvable graphic arrangements in otdemntroduce applications of the
hypersolvable partition on a hypersolvable graph.

Section (4) is devoted to introduce the notion Mfatroids". A matroid is a pair
M = (A,A), whered is a finite set and is a non-empty collection of subsetsAtalled
independent sets such thiaforms a simplicial complex and every induced sungolex
of A is a pure, i.e. i € A, the maximal elements @f n 22 have the same cardinality,
where28 = {C € A |C € B}. That is a matroid/ is essentially a set with some kind of
'independence structure' defined on it. With atéimhatroidM there associated several
simplicial complexes that are interrelated in ampesging way. They carry some of
significant invariants oM as face numbers and Betti numbers that give dseseful
algebraic structures. Such complexes are:Gfmmmplex A, the broken circuit complex
NBC,(M) and the reduced broken circuit complRC,(M) via a fixed orderinga of
the underlying sefl of M. In particular, the broken circuit complex carrtee chromatic
properties ofM. The homology of geometric lattice complexes watednined in the



pioneering work of Folkman (1966), see [6]. On dtker hand, Folkman’s theorem for
homology made the geometric lattices, one of thévating examples for the theory of
Cohen-Macaulay Posets (see Stanley, [19]). Orldk Salomon (1980), showed that the
singular cohomology ring of the complement of a ptax arrangement of hyperplanes
can be described entirely in terms of the order ¢dlogy of the geometric lattice of
intersections. Hence in these connections, the gaa@rlattice homology is related to
interesting applications of matroids within mathéog In ([2], 2010), Al-Ta'ai and Al
define the hypersolvable partition complgy(A) of a hypersolvable matroid = (4,4)
and some applications was investigated.

Let I, be the homogenous ideal of the polynomial algdghra-indeterminate,
A = K[x4, ..., x,] generated by all the "minimal" non-facesfofThe ringA, = A/I, was
first considered by M. Hochster (who suggestedbitstudentG. Reisner, see [7] for
further study) and independently by this resear¢h@f and [22]). Motivated by the fact
that the homological information of M is encoded time associated minimal free
resolution of A,;

00— M, > M,_, > —M;— A, —0;

section (4) included this concept, (see section [#). In section (4) we studied the
hypersolvable graphic matroid which associates thypersolvable graph and some
results were given. Finally, section (4) includedng of applications and illustrations of
hypersolvable graphic matroids.

(2) THE HYPERSOLVABLE PARTITION AND THE NBC-BACES OF A
HYPERSOLVABLE ARRANGEMENT

The aim of this section is to review a brief sumynair the notion a "hypersolvable
partition" of an arrangement that is defined by Ali in ([2002).
Definition (2.1): [3] and [13]

1. A partitionIT = (I, ..., I1,) of an arrangememt is said to bendependent, if for
every choice of hyperplanég € []; for1 < i < ¢, the resulting-hyperplanes are
independent, i.erk{H, n..Nn H,} = ¢. LetX € L(A) andIl = (II, ..., I1,) be a
partition of A. Then theinduced partition Il is a partition ofdy with blocks are
the non-empty subsel N Ay, 1 <i < ¥.

2. Call § = {Hy,...,H} ak-section of Il if, for eachl <i <k, H; € Il,,,;, where
1<m <--<my <¥.Ithas been noticed thatlifis independent, then all its
sections are independent. B§(A4) we denoted the set of altsections of I and
Su(A) = Uk-,SE(4).

Definition (2.2): [3]

Let A be a central-arrangement. A partitionll = (I1,, ... ,I1,) of A is said to be
hypersolvaple with length £(4A) = ¢, exponent vector, (ord-vector), d = (d4, ..., d,),
(where d; = |l'[i| for, 1 <i <¥) and denoted by Hp, if |l'11| =1 (i.e. II; is a
singleton) and for fixed < j < ¢, II; satisfies the following properties:

(closed property offl;): For any Hy,H, € I1; U ... UIl;, there is no hyperplanfl €
;14 U ... UII, such thatrk{H,, H,, H} = 2.



(complete property ofl;): For each Hy, H, € I1;, there existdl € II; U ... UTI;_; such
that rk{H,,H,,H} = 2. It has been noticed that, form closed propertyllpf the
hyperplanené! is unige and we will denote it by = H ,.
(solvable property ofl;): If Hy, H,, H; € I1;, then the hyperplaneH, ,, H, 3, H, 3 € I1; U
. UTl;_y, eitherH, , = Hy 3 = Hy3 or 7k{H, 5, Hy3, Hy3} = 2.

For 1<j<¢ we define the rank of blockll; of II as rk(Il;) =

rk (nHEHlu...UﬂjH)- We callll; singular ifrk(Il;) = rk(Il;_;) and we call it non singular

otherwise. An HpIl is said to be supersolvable if it is independédhserve that
rk(Il;_;) < rk(Il;) in general and if = 3, then everyl, ,I1; ,I1;, € Il are independent,
wherel < i, <i, <i; <4.

theorem (2.3): [12]

Let A be an essential central compkarrangement4 is a hypersolvable if, and
only if, A has an H@l andA is supersolvable it has a supersolvable partition.
Definition (2.4): [2]

Let A ={H,,...,H,} be a hypersolvable-arrangement with Hpl = (I, ..., I1,)
and exponent vectat = (d4, ...,d,). For1 < i < ¢, partitionedIl; into two blocks as;
M., = {H, .., H;} € 1; such thatk(H,, .., H; ) = 2 andIl;,, = II; \ T;.,, such that,
rk(H;,, .., H;,H) = 2 for eachH € II;,,. Define ahypersolvable order of A associated
to Hp Il and denoted by, as follows:

1. If H;ell;andH; €Il with1l <i <j <, put H; 2 H,.

2. For fixed1<i<¢? we give the hyperplanes of the subbldek of II; an
arbitrary total order with preserving the ordeflpf andIl; form1 < j<i—1, as
follows: if H,, H, Hs € I; with rk(H,, Hy H;) =3, we put {H;  H; H;}=
{H,,H,, H3}, such that{; 2 H;, 2 H;_ if,and only if,H; ; S H; ; S H; ;

113 iz,i3"

Proposition (2.5): [2]

Let A be a hypersolvable arrangement with anlHg (11, ..., I1,) andrk(4) = r.
Then for2 < i < r, every ani-NBC base oA must be ari-section offl.
Definition (2.6): [3]

Given twor-arrangementsi, = {H{,...,H} and 4, = {HZ, ..., H2}:

1. We will say 4, and A, have the same lattice @requivalent and denoted by
L(A)) = L(A,), iIf for each1<i; < <iy,<n and 1<k <n we have
rk(Hl-ll, ...,H}k) = rk(Hl-Zl, ...,Hl-zk).

2. For 2<k<r-1, set £,(4;)) ={B; € A, | |B;| < k+1} to be the lattice
intersection pattern up to codimensiof A; andi = 1,2. We say4; and A, are
f-equivalent and denoted by, (4,) = £ (4,) ifforeachl <i; <--<i;<n
and j < k + 1 we haverk(H;, ...,H}j) =rk(H?, lej)

Note that, if A; and A, areL-equivalent, then they a -equivalent for2 < k <r — 1.
But the converse needs not to be true in genszal[2].
Theorem (2.7): [2]

Let A be a hypersolvable-arrangement withrk(4A) =r >3 and Hp, 1 =
(14, ..., I,) has an exponent vectdr= (1, ...,1). Then:-
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1. If |A] =€ =r, thend is supersolvable and far< j < r;
b, = |NBC;(4)| = (j)
2. If r<m(A) =r+1<|A| =4, thend isr-generic and fol < j < r;

b = INBG;(4)| = () and b, = INBC,| = (*) - (*;1) = (‘2)).
3. m(A) <r <|A| = ¢, thenforl <j <7, b; = [NBG(A)| < ().

(3) THE HYPERSOLVABLE PARTITION GRAPHS AND APPLICATIONSOF THE
HYPERSOLVABLE PARTITION ON A HYPERSOLVABLE GRAPH

This section is devoted to define a hypersolvaladdigon of a graphG which
inherits toG a fashion as a hypersolvable graph.
Definition (3.1): [13]
A finite simple graphz = (V, €) is an ordered pair consisting of the Bef vertices
and the seg of edges with the following two conditions:
1. Vis afinite set,
2. € is acollection of 2-element subsets1of

A graphG = (V,€) is calledcomplete when the set is the set of all 2-element
subsets of V. From now on we will use the square brackigig] to denote an edge
{i,j} € € in order to distinguish it from the subset of twertices.

Definition (3.2): [13]
Let G = (V,€) be a graph. Thehromatic function y(G,t) is a function define on
the set of nonnegative integers by;
x(G,t) = The number of colorings @ with t colors.
Since the chromatic function is a polynomial. THesm now we call it thechromatic
polynomial of G.
Definition (3.3):

Let ¢ = (V,€)be a connected graph with a finite set of vertiges,V = {v,,
.. ,Um}. A pair of partitions]J1¢ = (11", 11%) is said to be &ypersolvable partition of G
and denoted by HAC, if 1" = (1Y, ..., T1V,_,) andIll® = (11§, ..., T1%) are partitions of
and€ respectively, such that the following properties satisfied:

HPy: 1Y = {v,,v,} andIl{ = {e,}, such thae, = [v,,v,], i.e.1I¢ is a singleton.
HP,: For each2 < j < m-1, the blockl'l}’ is a singleton.
HP;: For each2 < k < ¢, the blocKI1¢ satisfying the following properties:
HP;i: For eache; ,e;, € Y U .. U II§, there is no edge € II;,; U ... U II§ such
that{e; ,e;,, e } forms a set of edges of a triangle.
HP;ii: There exists a positive intege m;,, < m-1, such tha¥, = 1Y u ... U H%k
is a subset oF that contains all the end points of the edgeRéiru ... U 1%, i.e.
Gr = (V,, IE U ... U TT§) forms a subgraph @f. Then, either;
1.I¢ = {e} such thaV}, = V,_,,
or;



2.1y = {e;, wrig 3 SUCh  that Vi \Vi_; = My,_,+1 =y, ={w} and for
1<j <dy e;=][vv], for some v; €My V..U Iy, _,, where
{vi,, ""Uidk} C Vk—1 =1I; U.. U Il . induces a complete subgraphGof

The number of the blocks @F is called the length dil and denoted b¥(G) = *.

Forl <k < ¢, letd, = |l'I,§ | andd = (d4, ...,d,) is said to be the exponent vector
(or d-vector) ofIl. Define the rank ofll€ asrk € = |V, | — 1 andrk(G) = rk I§ =
m — 1. We will call the blockIl{ singular block, if |Vk_1| = |Vk| and non-singular

otherwise, i.eIl is non-singular if| Vi\Vi-1 | = 1.
A hypersolvable partitiodl is said to be supersolvable if, and onlyIif, has no
singular block.
We will call a hypersolvable partitioli, generic if¢ > m, the exponent vector
d = (1, ...,1) and everyc-eadges o€ cannot be ak-cycle,3 <k <m — 1.
Remark (3.4)
It has been noticed that;
Forl < k < ¢, the positive integern, needs not to be equalko- 1 in general.
£ = m-1=rk(G).
¢ =m - 1if, and only if,IT is supersolvable.
11§ cannot be a singular block, fo¥, | = 3.
5. We callHP,i the closed property 6f.

HwnhpE

Corollary (3.5)
For3 < k < ¢, if € is a singular block, theRé is a singleton, i.e| & | = 1.

Proof: By contrary, iflI¢ contains a triangle, thel,,, \Vi,,_.| = 3. Which contradicts
our assumption thgtG, K) is solvable, and from definition (3.1);\Vx| = 0,1 or 2. o
Note (3.6):

The worth point to note here that every supersdévapaph forms a connected
hypersolvable graph. So, there is no loss of gdibema assuming that all the graphs that
will be used from now on are connected.

Theorem (3.7):

LetG be a connected graph. Théhis hypersolvable if, and only if¢ has a

hypersolvable partition.
Proof. Firstly, supposé: is a hypersolvable graph, we need to show ¢thats an Hp.
Sinceg is a hypersolvable graph, hengdas a hypersolvable composition series say,
G, C -+ CGy C Gpyq C+ C Gy
For1<k<¢,if G, = (V¥ €F), then put;
1. ¥ =vtand I = €.
2. For 2 <j < ¢, deduce that, #/\V/~! = {v,v'}, (i.e.v,v’ & V/71), then for each
V"' € V/71, there exist paths froml’ into v andv’ respectivly. Bu{v”,v,v'} can
not be a triangle, since there is no edg€&’of containsy orv’ as end point. Thus,
without loss of generality we can rearrange themasiiion series above such that
our choices will be eithe¥r/\V/=1 = @ or V/\V/~1 = {v}. Therefore, there exist



2< jp, < j3 < v+ < jmeq < £, such thatV/k\V/k~1 is non-empty sets2 < k <
m- 1, wherem = |V| Put;

My = Vie\pJet,
3. For 2 <j<¢ putllf =€/\&/™,

Deduce thatIl® = (I1",N¢) = (@Y, ..., 11%,_),(1§, ..., 11§ )) forms a hypersolvable
partition ofG.
Conversely, suppose that G has a hypersolvablgiparsay;
né = @v = 1y, ..., m,_,), ¢ = (g, ..., m%)).
Put,
G, =W'=n1nv,e'=1d.
For 2 <k <
Gy = (Vk=V,ek=néu.. v,
whereV, = IIJ U ... UIIY, as given in definition (3.3). It is clear th@t c --- c G, C
Gr+1 € - C G, forms a hypersolvable composition serie& ofi
Theorem (3.8):
A connected hypersolvable grapgh is supersolvable if, and only,iiG has a
supersolvable partition.
Proof: SupposeG is a hypersolvable graph which is supersolvableenT¢ has a
hypersolvable composition series:
G, C - CGpq=0G.
(Y = m —1) such that:
1. For eachl < k <m — 1, there is a single vertex &), \G,_, sayvy,
2. The subgraph of, that induced by, and its neighbors i, is complete.

By applying the proof of theorem (3.7) above thegdrgolvable composition series
induces a hypersolvable partition say;

M = (" = (I, ..., M), M® = (15 ..., T )).
Thus,I1¢ has no singular block, thiikis supersolvable.

Conversely, suppose thétis a hypersolvable graph has a supersolvabletiparti

say;

née =@ =my,..ny,_pHnt=ms.. n_).
Sincell® has no singular block, henée= m — 1. If we apply the proof of theorem (3.7),
we have;

Gy © o C G Chryp © o C Gy,
is a hypersolvable composition series. L&\V*~! = {v} and let{v; , .., Uy, } be the set
of its neighbors of;
G, = (YU ..ulY,né v ...uI5).

Hence,II§ = {ei,, ""eidk} such thateij = [vij,v], 1 <j <d,. From definition (3.3) of
the hypersolvable partition we ha‘{eil, ""Uik} induced a complete subgraph ®f_,
and if we add the block&,\G,_, = (11},TI¥), we obtain that{v; , ..., v;,, U} Is @
complete subgraph @, and this finishes the proaf.



Lemma (3.9): (The complete property a1t )

Let G be a connected hypersolvable graph with a hypeabt# partitionI1¢ =
(Y, M%), For2 <k < ¢, if e;, e, € IIE, then there exists a uniquee MU ... UT%_,
such thafe,, e,, e} forms a triangle.
Proof: Since e,, e, € II¢, hence|l‘[,§| > 2 and by applying definition (3.3) we have
Vi\Vi_1 = {v} such thae; = [v; ,v] ande, = [v;,,v]. That isy;, andv;, form neighbors
of v. But the set of all neighbors ofis a complete subgraph 6f Thus[v; ,v;,] forms an
edge inll¥ U ... UTI{_, and{e,, e, e} is a triangle. On the other hand, the grapls
simple, sce must be uniques
Notation:

Sincee must be unique, we will denoted it by;.
Lemma (3.10): (The solvable property @t )

Under the hypotheses of lemma (3.2)gife,, e; € 1§, then{e;,, e;3,€,3} is a
triangle.

Proof: Since ey, e,,e; € 11§, hence |lI§| > 2 and V,\V,_, = {v}. Let e, = [v;,v],
e; = [v;,,v] and e; = [v;,,v]. It is clear thate;, = [v; ,v;,], e13 = [V, V], €23 =
[vi,,v:,]. Thatis,{e;,, e, 3, €, 3} forms a trianglex

Definition (3.11):

Let G be a hypersolvable graph with hypersolvable partitDefine ahypersolvable

order on G associated to an Hp¢ = (11", I1¥) and denoted by, as follows:
1. Put an arbitrary order on the verticesIof .
2. If v; € TI] andv; € 11} such thatj < j, puty; S v;.
3. If e € I ande’ € IT§ such thatj < j, pute < e,
4. If e,e’,e" €I, set; Qe Qe <e ;e ;. Qe ;. , where;

{eil, e, ei3} ={e, e’ e"}.
If G is supersolvable, we will cadt, a supersolvable ordering.
Theorem (3.12): [17]

A graph G = (V,€) is supersolvable if, and only if, there exists amlering
Uy, Uy, ..., Uy Of its vertices such that if <i <j <k <m, such thatlv;,v,] € € and
[vj, vi] € €, then[v;,v;] € €. Equivalently, in the restriction af to the vertices,, ..., v;
the neighborhood af; is a clique.

Proposition (3.13):

Let G = (V,€) be a supersolvable graph with a supersolvabléetipartll¢ =
(Y, 11%). Via a supersolvable ordering on G, if [v;,v,] € € and [vj,vk] € €, then
[vi,v;] €€, wherel <i<j<k<m.

Proof: From definition (3.3) of the supersolvable partititl® = (11,11%), we have
v;,Vj, vy, distributed among the blocks of" as follows;

v; € I ,v; € I} and vy, € I
with keeping in mind that, eithen'=n—1 or n'=n, for n=1i,j,k, ie. if i =
land j=2, i'=j' =1. ThenIl} # )., n = i,j. Since[v;v;], [v;,v,] € IIg, hence
[v;,v;] € l'If In fact, the neighborhood setwf is a clique ofz. o



Remark (3.14):

Proposition (3.13) is a worth pointing out that #edstence of the supersolvable
ordering that induced from the structure of theessplvable partition, forms a necessary
and sufficient condition on a gragh to be a supersolvable graph, as shown in Stanly
theorem (3.12).

Definition(3.15):

A simple connected grap@i = (V,€) with |V| =m > 3 is said to be generic if
everym — 1-eadges o€ cannot be am — 1-cycle.
Proposition (3.16):

A connected graply = (V, €) with |V| = m > 3 is generic if, and only if¢ has a
generic hypersolvable partitidi with length?(G) = m.

Proof: It is clear that, I1G is generic, the& contains no triangles. That is, one can simply
construct a hypersolvable partitidi = (I1",11¥) of length #(G) = £ by adding one
edge at time. ThuH® is generic, sinc& contains non — 1-cycles. Conversely, i has

a generic hypersolvable partitioli = (I1",11%), then € = Ui_,TI¢, where I1{ is a
singleton forl < k < ¢ and from the properties of the generic partiti®rgontains no

m — 1-cycles.

On the other hand, by contrary supp@¢6) > m and lete; ; be thek™ edge ofe
via a hypersolvable ordem < k < #. Deduce that, the blocK¢ is singular, since
rk(T§) =m—1,form < k < ¢. That s, ifV;, = 1Y U ... U TI},, is the subset df that
contains all the end points of the edgeslinu ... u I, thenV, = V. But G is a
connected graph, so without loss of generality s construct the generic partitidr¥
such that the grapls’ = (V, 11§ U ... U TI§,_,) is connected. Thus there is a path of
G'started ai and ending at and the number of edges that this path passesgi@annot
exceedm — 1, sincei # j. Also if we add the blocKIf,, then the subgrapls” =
v,né u..u ¢ _, ulg) is a connected subgraph 6f that forms anm-cycle and
contains nom — 1-cycles. LetIl§, = {e;rj}. It is clear thate;; # e;s 7, sinceG is a
simple graph. i.ellf U ... U II5,_; U II§is anm-cycle and if we addl} = {e; ;}, we will
induce a new cycle ofli¢ u ... u & U II¢ with length less tham, which contradicts
our assumption that contains non — 1-cycles. Thereforé(G) = m. o
Remark (3.17):

We mention that;

1.7k(Ag) = V| —1.
2.If K € G, thenrk(Ag) = 2 if, and only if,K is a triangle of;.
3.x(G,t) = x(4¢, 1).

Proposition (3.18): [14]

A graph G is hypersolvable if, and only if, the graphic agamentA; is
hypersolvable.
Corollary (3.19):

A graphG = (V, €) is hypersolvable if, and only if, the graphic agament4, has
a hypersolvable partition.
Proof: From proposition (3.18), a grap&i = (V, €) is hypersolvable if, and only i is
hypersolvable and by applying theorem (3.7), thephic arrangementd; is
hypersolvable if, and only i4; has a hypersolvable partitian.
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Remark (3.20):
The important points to note here are that:

1.If ¢ = (V,€) is a hypersolvable graph, thety, has a partitionll’ = (I1, ..., I1,)
induced from the hypersolvable partitiblf = (117, 11%), as forl < k < ¢, H;; € Tl
if, and only if,[i, j] € I§.

2.1f [iy,j1], iz, j2] and]is, j3] form a triangle. Then the s, ji, i5, j2, i3, j3} = {i,j, m}
contains just three vertices. Therefored; ; , Hi j, Hi,j,} = {Hij, Him, Hmm} and
rk{Hl-j,Him, Hjm} = rk{(x,, ...,xr)|xi =x = X} = 2.

Corollary (3.21):

Let A be a hypersolvable graphic arrangement with hygbheable partitionIl’ =

{mn,, .., 0,}. For2 < k < ¢, if H;,H,, H; € I, then;
rk{H,, H,, H3} = 3.

Proof: By contrary, supposek{H,, H,, H;} = 2. SinceH,, H,, H; € Il;, then there exist
[i1, /1], liz, j2), [is, js] € TIE such thafiy, j;]1, [i5, j2), [is, js] form a triangle. Therefore, the
set {iy, j1, i3, 2, U3, j3} = {i,j,m} contains just three vertices. Now, from the corneple
property of the blocKlt, for the edgedi, j], [i, m] € T1§, there exists an eddg m] €
né U ..U né_; such thatli, ], [i,m], [j,m] form a triangle. Thus there are two edges
from the vertex j to m and that contradicts ouruagstion that our graph contains no
parallel edges. Thusk{H,, H,, H;} = 3, as we claimeda
Corollary (3.22):

Suppose we have the assumption of corollary (3Tign | I, | =1or?2.

Proof: By applying the fact thatk(Il,) = 2 and corollary (3.21), it is clear thiiﬂz | =
lor2.o
Theorem (3.23):

Let G be a hypersolvable graph with hypersolvable pantifl® = (11, I1%). Then
the partitionIl = (I1,, ..., I1,) that given in remark (3.20) is a hypersolvabletian of
Ag.

Proof: We need to show thdl satisfied the properties of the hypersolvableifpant So,
the proof will be divided into the following steps:

HP1: Obviously]l, is a singleton, sincB?{ is a singleton.

HP2: For agiverz < k < ¢;

For the closed property ofMl,: Let Hy, H, € IT,. From the construction di’, let

[i1, /1], [iz, j] € I be their related edges and from definition (3.8% have

My, = {v}. So,j; =v=j,. By contrary suppose that there exists a hypeeplan

H e, U..Ul, such thatrk{H,,H,, H} = 2. That is there exist$iy,jy] €

mé,, U..UTE, the related edge tél such that{[i;,v],[i,,v], [iy,jy]} form a

triangle. Which contradicts the closed property Itff. Therefore, there is no

H e, U..UIl, such thatk{H,,H,,H} = 2.

For the complete property ofIl,: Let H,, H, € IT, and let[i,, j,], [i,, j,] € TIE be

their related edges. By applying the complete pitypef 115, there existsiy, j;] €

néuy..uné_, such that{[iy,j,1,[iz, /.1, lix, ju]} forms a triangle. That is there

existsH € I1; U ... U Il _4, such thark{H,,H,,H} = 2.
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For the solvable property ofIl,: SupposeH,, H,, H; € I1;. From definition (3.3),

let I, = {v} and from the structure di, let [iy,v], [i,,v], [i3,v] € I} be their

related edges. In fact, from corollary (3.21%k{H,, H, H;} =3 and

{liy,v], [i,v], [i5,v]} cannot be a triangle. By applying definition (3.3)

{liy, i2], [i1, i3], [i,, i3]} forms a triangle and their related hyperplanes;

Hyp Hys, Hys €T U ... UTT_g;

Satisfiedrk{H, ,, H 3, H, 3} = 2 and this complete our proof.

Construction (3.24):

SupposeG = (V,€) be a hypersolvable graph with hypersolvable pantifl® =
(I, %) such that? >r = rk(G), (i.e. G not supersolvable). Lefi; be the graphic
arrangement off, andIl be the induced hypersolvable partition given maek (3.20).
Case | :If £ =r + 1, then we have the cases as follows:

Case .1 :If TI, be the singular block di". Then, for eaclil € 4;, put@y = (ay, Ay),
where
I {0 if Hely,.., ,_;
=1 if Hell,
Case 1.2 :If TI,_; be the singular blockl. Then for eachH €I, ..., I1,_;, put @y =
(ay, Ayt), where
I {0 if Hell,..,,_,
=1 if Hel,_,

If H;, €Il, the minimal hyperplane ofll, via the hypersolvable order, then for

k =iy,i; +1putay, = (ay,, Ay, t) Where;

_ (0 if Hpg41 €y, g

e = {1 if Hi i1 €1y '
And fork =i + 2, ...,i; + dy, putay, = (ay,, Ay, t) Where;
(GrAn; e + Mo, )
dx

and(gy, he, qx) € C*/0 such that, Ik ke + hxay, + qray, =0.
Case II: If I1' hass-singular block. Then we will use iterated applicas of the cases
(1.1) and (I.2) as shown in construction ((4.1.19)).

Hy

Proposition (3.25):

A graphG = (V,€) is a generic graph if, and only if, its graphicasigement4,; is
generic.
Proof: By applying proposition (3.16) and theorem (3.28I, claim will be proveda

Theorem (3.26):
The following assertions are equivalent:
1. G is supersolvable.

2. TI is nice.
3. NBC(Ag) = S(Ag) and forl < k < rk(G);
b, = Yk yi-k+l t d. d. ..d.
k i1=1 &ip=iq+1 " Lip=ip_q+1 Wi Yig = Yige

Proof: This is a direct result of theorem ((1.2), [3]) ahdorem (3.8)c
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Theorem (3.27):
If rk(A;) =m—1<4¥, i.e. G is not supersolvable, then via a hypersolvable

ordering on the hyperplanes 4f, we have the following:
1. Recall the definition op(4;) in corollary (3.15). The2 < p(4;) < m — 2 such
Spa)+1(Ae)\Spag)+1(Ac)NBCyay+1(Ag)-
2. If m=4, thenp(4;) = 2.

Proof: This is a direct application of corollary ((1.43]] and proposition (3.18)

Remark (3.28):
Let G be a graph with no triangles. It is clear thais a hypersolvable graph and if

Il = (11",11%) be any hypersolvable partitioA¢ = (11V,11%) of G, thenII¢ has an
exponent vectod = (1, ...,1) and the following theorem is to classify such dusp
Theorem (3.29):
Let G be a hypersolvable graph witlh > 3 and Hp, I1¢ = (I1Y,11%) has an
exponent vectod = (1, ...,1). Then we have the following:
1. If [E]=¢=m—1, then G is supersolvable and fol <j<m-—1, b; =

INBC(46)| = (1), i.e.x (G, t) = Bt (™) emI

2. If m(G) = |€| = £ = m, thenG is generic have just one-cycle and forl <j <
m—1, b; =|NBC;(G)| = (T) and b,,_, =m—1. With respect to a fixed
hypersolvable ordering, the maximal hyperpl@eof A; will be deformed by
Jambu’s and Papadima’s deformation method khtehich is defined by the linear

form: @, = (ay, 1), where the other hyperplanes will be lifted byid#i lift.
3. m(G) <rk(G) =m—1<|€| =4, thenG is neither supersolvable nor generic

andb; = |NBCj(G)| < (f) for1 <j <r, and4; will deformed by Jambu’s and
Papadima’s deformation method as follows:
« For H €11, andIl, is non singular block ofl’ will deformed intod by
trivial lift, i.e. ag = (ay, 0).
« For H €I, andIl, is a singular block ofl’ will deformed intoH as
ag = (ay, 1).
Proof: For 1: Since|€] = ¢ = m — 1 = rk(G), henceG has no singular block. Therefore
G is a supersolvable graph and from theorem ((13B)is easy to check that; =
(™), for1 <j < rk(4g) =m—1.
For 2: If |€| = £ = m, then by applying proposition (3.16),has no singular block and it
is a generic graph. According to theorem ((3.2.[Z),and proposition ((3.25h; = (T)
for 1 <j<rk(4;) =m—1 and forj =rk(4g) =m—1, by_1INBCyp_y| = ([23) =
m — 1. Where for the other claim proved only by applysanstruction ((3.24), case 1.1),
sincef(G) = m.
For 3: Similarly, by applying theorem ((3.2.15), [2]) foine graphic arrangemeuni;

which is hypersolvable with exponent vectbe (1, ...,1) andm(G) < rk(4;) = m —
1. On the other hand, sinde= (1, ...,1), hence any singular block &f contains just one
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hyperplane and there is no collinear relation amibregblocks of I1'. Thus by applying
construction (3.24) our claimed is proven.
Remark (3.30):
It is worth pointing out that il; is a graphic3-arrangement associated to a graph
G = (V,€), then|V| =4, i.e. the number of such arrangements is finitd e can
illustrate all the results given in chapter one amal in this thesis.
If G is a completet-graph, thenG is supersolvable. As an application of theorem
(3.27), we easily compute the chromatic polynorofaf;
x(G,t) =t3 +6t%+ 11t + 6.
Furthermore, all the othet-graphs can be obtained from the complete gréphy
deleting edges fron&. So, we can simply classify it up to isomorphisingoeaphs as
follows:
1. If we remove just one edge fro, then we will obtain six4-graphs are
isomorphic. Their bond lattices are isomorphic #mel following figure is one of
them:

Figure (3.1)
Each one of them is a supersolvable graph andhitsr@atic polynomial is;
x(G,t) = t3 + 5t% + 8t + 4.
2. If we remove two edges frof) then we have the following:
I. twelve isomorphic supersolvabke-graphs with the same bonds lattices as
given in the following figure:

Figure (3.2)
Each one of them has a chromatic polynomial;
x(G,t) = t3 + 4t% + 5t + 2.
ii. three isomorphic generi-graphs with the same bonds lattices as givenen th
following figure:

Figure (3.3)
Each one of them has a chromatic polynomial;
x(G,t) = t3 + 4t% + 6t + 3.
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3. If we remove three edges frofn then we have twenty isomorphic supersolvable
4-graphs with no triangles and they have same bdatises as shown in the
following figure:

Figure (3.4)
Each one of them has a chromatic polynomial;
x(G,t) =t3 +3t2 + 3t + 1.

Theorem (3.31):

If a graphG = (V,€), has |V| =4, then G is hypersolvable and eithef is
supersolvable with

x(G,t) =t3+ (1 +d, +d3)t? + (d, + ds + dyd3)t + dyds;
or G is generic with

x(G,t) = t3+(i)t2+(3)t+3 =t3+4t>+6t+3;

whergd,, d,, d3) is an exponent vector for a fixed hypersolvableitfian of G.
Proof: This is a direct result to our classification givememark (3.30)a

(4) THE HYPERSOLVABLE GRAPHIC MATROIDS

In this section we will study the hypersolvablepgstsolvable) matroids associated
to the hypersolvable (supersolvable) graph and Wedefined the hypersolvable graphic
matroid M.

Definition (4.1):[4], [6] and [18]
A "finite" matroid is a pairM = (4, A), whereA is a finite set and is a collection
of subsets oA, satisfying the following axioms:
1. A is a non-empty (abstract) simplicial complex, e @ and if A’ € A and
A" c A', thenA" € A.
2. Every induced subcomplex df is a pure, i.e. iB € A, the maximal elements of
A n 2B have the same cardinality, whe®= {C € A |C € B}.

The members oh are calledndependent sets of the matroid, the facets is said to be
the bases of the matroid and we wtite M to mearv € A. We callA aG-complex. Two
matroids M; = (4,,4,;) and M, = (4,,A,) are said to besomorphic if there exists a
bijectiony : A; — A, such thafv,, ..., v} € A if, and only if, {i(v,), ..., ¥ (vr)} € A,.

A circuit € € A is a minimal dependent set, i@.is not independent but becomes
independent when we remove any point from i IiE A, we define the rank & by;

rk(B) = max{|B'|| B’ € B and B’ € A}.
In particular,rk(¢) = 0 and we will define the following:
1. Therank of the matroidM itself by rk(M) = rk(A) = dim(A) + 1 = |F|, where
F is a facet oM. The level of a matroid iEM) = |A| — rk(M)-1.
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2. A k-flat of M is a maximal subset of rarkk It has been noticed that, Bf and B’
are flats of a matroid, then so isSNB’. We can defined thelosure B of a subset
B < A to be the smallest flat containiBg i.e. B = Nfqes pop B' -

3. L(M) for a matroidM to bethe poset of flats of M, ordered by inclusions. Since
L(M) has a top elememt, thenL(M) is a lattice, which we call thattice of flats
of M. It has been noticed thdt{M) has a unique minimal elemeht= @.

4. Define thecharacteristic polynomial y,,(t) of M, by;

xu() = ZXEL(M)#(O» x) ¢ TR0,
whereu denotes the Mbius function ofL.(M) and r = rk(M).
5. Define theCrapo’s beta invariant;
BM) = (=)™ (DI rk(B).
Definition (4.2):[4], [6] and [7]

A broken circuit of an ordered matroif, is a setC = C\v, where(C is a circuit
andv is the minimal element of via <. The broken circuit complex (or BC-complex)
which is defined by to be the simplicial complex;

NBC,(M) = {B < A | B contains no broken circuit}.
For0 < k <rk(M), set;
NBCEX(M) = {B € A | B contains no broken circuit and |B| = k + 1};
to be thek™ skeleton ofVBC,(M). It has been noticed that, fif = (f2, f2, ..., f2,) be
the f-vector of NBC.(M), then [INBCX(M)| = f£ and by applying a result of Rota [15];
() = fA7 = [t e+ (D)
wheregf, = 1.

The family of all subsets ofl/{1} that contains no broken circuits is called the
reduced broken circuit complex of M, and denoted BYBC,(M).
Definition (4.3): [20]

Let A ={H,, ..., H,} be a central-arrangement of hyperplanes over Define a
matroid M, = (A,A) on A by letting A to be the collection of all independent
subarrangements df. It has been noticed that(4) = L(M,). Via a linear orderingg,
let:

NBC,(M,) ={B < A | B contains no broken circuit};
be the NBC-complex ofM,. Then;
() = A7 — [Pt 4+ (DT

wherer = rk(4A) =8+ 1 and f2 = (f&, f2, ..., ) be thef-vector of NBCo(M,) and
f-1 = 1. Notice that,h, = B (Ar) = fA, is the type of the Cohen-Macaulay ring
A, and it has a minimal free resolution;

00— M, —>M,_; —> - —> My — A, — 0;
where for0 < k < r, rk(M,) = 5, (4,) = INBCK(M)| = £ ;.

The matroid M, is said to be hypersolvable (supersolvable) matndi A is
hypersolvable (supersolvable) arrangement.

We concern witk is hypersolvable-arrangement with Hl = (I1,, ..., [1,) andd-
vectord = (dy, ...,d;). Let NBC,(M,) be theNBC-complex of the matroidf, via the
hypersolvable ordering with f-vector, f2 = (f&, 2, ..., ). That is, we shall give the
no broken circuit subarrangements the degree Igraqiic (DeglLex) order with respect
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the hypersolvable ordering. Where, WBC,(M,)|; = {S € NBC,(M,)| S < II;} we
denote the restriction ®#BC,(M,) toll;, for1 <i < 4.

For 1<k<¢?, let Sf(A) ={Sc A|Sisa k —section of I} and letSy(4)|, =
{{H}| H € 11} be the discreté-dimensional simplicial complex. L& (4) = Sy (4)|, *

-+ % S (A)], be the multiple join of the complex8g(4)|4, ..., Sp(4)|,. That isSy(A4) =
Uf_, Sk(A). We callS;(A) ahypersolvable partition complex of the matroidM, via the
hypersolvable ordering. It has been noticed thatgéneralS;(A) need not to be a
subcomplex of th&-complexA of the matroidS; (4). The important point to know here
NBCo(My)|, = Sn(A)|x in general, foll < k < £. ButNBC,(M,) # Sy(A) in general.
Definition (4.4):[16]

For any grapht = (V, €), by agraphic matroid M; = (G,A;) on G, we mean the
matroid that isomorphic tdf,. = (4s,A4,) On the graphic arrangemeAt by letting
Ag= Ay, i.e. via an ordering? on the edges d, A; will be the collection of all broken
circuits and no broken circuits @f. If G is hypersolvable (supersolvable) graph, we will
call M, a hypersolvable (supersolvable) graphic matroid;olt has been noticed that,
L(M,,) is the bond latticé&(G) onG. Via a linear ordering? on&, let:

NBC(M;) = {B € A;| B contains no broken circuit};
be the NBC-complex ofM. Then;

X6(0) = Xug (8) = FEFE7 = fyO67 =1 4 (1) £25;
wherer = rk(4g) = [V'| — 1 =8+ 1 andfe = (£, £, ..., f; ) be thef-vector of
NBCo(Mg) and f, = 1. Notice that,h, = By (Ans) = f15, is the type of the
Cohen-Macaulay ringA, . and it has a minimal free resolution,

0> M, > M,_; — - — My — Ay —0,
where for0 < k <7, rk(M,) = B (As,) = INBCE(M)| = £,
We will apply Al-Ta'ai's and Ali's basic results in [4] by the following

theorems:
Theorem (4.5):

Let G = (V,€) be a hypersolvable graph with Hp= (I1",11%), £(G) = ¢, 1 =
(I14, ..., I1,) be the induced hypersolvable partition of its fiaparrangementl; with
exponent vectod = (d4, ...,d,). Via a hypersolvable ordering on G the following
statements are equivalent:
1. G is supersolvable.
2. NBCs(M¢) = Su(4g), ie; NBCs(M,,) = Su(Ag)|y -+ Su(4g)|, is factored

completely andf,¢ = ¥{X Sékl ¥ idid, .dy, for 0< k< -
1,where 2 = (£9, £, ..., %) be thef-vector of NBCo(M;) and y;(t) =
Xag(8) = fo5t8 — 04071 4o+ (= 1)£25; where 6 = 1,
he = Brengy(Bag) = £ = dads ...d, is the type of the Cohen-Macaulay ring

A, and it has a minimal free resolution,

0> M, > Mp_y — - — My — Ay, — 0,
where for0 < k < ¢, rk(My) = B (A,,) = INBCE(M)| = pact
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NBC,(M;) is completely balanced.

The Tskeleton NBC1(M,) is a complete-partite graph.

The minimal broken circuits (under inclusion) alleoé size two, i.e. every broken
circuit of A; contains 2-broken circuit.

ok w

Proof: For(1 — 2): SinceG is supersolvable, Thefy; is supersolvable arrangement and
by applying is partitioned int& classeslIl, ...,II, such that theorem (3.26),
NBC(A;) = S(Ag)via a hypersolvable ordering and forl < k < rk(G) = ¢;

b, = Y7k yi-k+l ¢ d:d. ..d. -
k 11=1 &iy=ig+1 " Lip=l_1+1 Y14 Flp " HPig
forms the number of th&™ —NBC bases ofd..That is, NBC(4.;) induced an
ordered subcompleXBC,(M;) of A; which is completely factored int€(A;) =

Su(Ag)|y ** Sp(Ag)|, and for 0 <k <£—1 the number ofk™ —faces of

NBC,(Mg) iskaG = b,,, and our claim is down.

For(2 - 3): In fact NBCo(M,,) = Su(Ag)|y *-+* Su(4g)|,, implies that the vertex set
of NBC,(M,), A every facet oNBC,(M,;) has exactly one vertex in every class.

For(3 — 4): SinceNBC,(M;) is cmpletely balanced, i.d, is partitioned intc? classes
I1,, ..., I1, such that every facet &fBC,(M,;) has exactly one vertex in every class.
Therefore, every l1l-faces of any facets has examtly vertex in two different
classes. That is the grapiBC3(M;) can partitioned int& classedl,, ..., I, such
that the vertices in every edge are from differelasses. TheWBCi(M;) is a
completef-partite graph.

For(4 — 5): If 1%tskeleton NBCi(M,) is a complete¢-partite graph, then the"-
skeletonNBCS(M,) = A; is partitioned intc? classedly, ..., 1, such that every 1-
faces has exactly one vertex in two different @dasdhat is every facefNBC
base) ofNBC,(M;) has exactly one vertex in every class. Hence yefaeets ofA,
which is not of NBC,(M,), (i.e. thef-broken circuit ofA;), has two vertices dfl;
forsome2 < i < ¢. Therefore, the minimal broken circuits are alsfe two.

For(5 - 1): Al-Tai’ and Ali in [4], proved that via a hypers@lble ordering on the
hyperplanes of a superslvable arrangement evergehraircuit contains broken
circuit of rank two and in [5], Bjorner and Zieglshowed that if there exists an
ordering such that every broken circuit containskbn circuit of rank two, (i.e. via
this ordering The minimal broken circuits (undeclision) are all of size two), then
L(A;) is supersolvable geometric lattice. Thus, by appglytheorem (3.8)G is
supersolvablex

Theorem (4.6):

Let G = (V,€) be a hypersolvable graph with Hp= (11V,11%), £(G) = ¢, a
hypersolvable orderinge on G, d-vector d = (dy,...,d,), f-vector of A;, f =
(for fir » frrecy-1) @ndf-vector of NBCo(Mg), 26 = (6, £, ...,]ﬁ‘éc)_l) such that
rk(G) =r=|V|—-1=m—-1<£. Then:

1. For2 <k <r,NBCY*(M;) = NBCk(M,,) < SE(A;) in general, i.e.
kaf1 = Zfl_=k1+1 fk=ik—1+1 di1 dik-
2. NBCi(Mg) = NBC3(M,,) = SE(A¢) is a complete-partite graph, i.e.
Ag _ yo-1 ¢
f1 = Liy=1Liy=i;+1 dildiz-

3. There exists2 < p = p(4¢) < |V| — 2 such that;
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p = p(4s) = max{k | SE(Ag) = NBCA™'(M,,) = NBCA(M;)}
andL,.,(A) represents the first level in the bonds latti¢d;) that the induced

partitionII' from IT on A;, has dependent sections amdpgt 2)-different blocks

of I" via the induced hypersolvable ordering. Thatas1f< k < p;

fAG — V-k+1 |, Y

k-1 = 4ig=1 g=lg-1+1 dil d

lg*
Proof: For 1. From theorem (2.5), sincé; be a hypersolvable arrangement , then for
2<k<rk(A;) =|V|—1, everyk-NBC base ofd; must be ark-section ofIl.
That is the number of a{lk — 1) faces ofd, can not exceed the number/of
sections ofl and our aim is hold.
For 2: By applying theorem ((1.4), [8]NBC,(A¢) = S,(A¢). ThereforeNBCA(M,,) =
Si(Ag) and f* = 2?;:11 fz=i1+1 di,di,.
For 3: From theorem ((1.4), [3]), fa < k < p(4;), NBC(Ag;) = S (4;). That is, for
1<k<p;
NBCY™(My,) = Sfi(Aq);
andfi, = f1—=k1+1 fk=ik—1+1 di, -d
Proposition (4.7):
Under the assumptions of theorem (4.6), Fortalt, € C\ {0}, Jambu’s and
Papadima’s deformed arrangemew’rlét1 and A4, ., are L-equivalent and they have

isomorphic matroidsMz; = (thl,ﬁtl) and Mz; = (thz,ﬁtz). That is, they have
1 2

i O

isomorphic  partition complexes, i.e.NBCq (M%tl) = NB(C, (Mg&tz) via the
hypersolvable ordering which give rise into ison‘nicpstandard(-algebraAAt1 = Ay, -
Proof: From theorem ((4.1.1), [1]), fay,t; € C\ {0}, Ath andAGtzarefz-equivaIent
and by applying theoreLn ((~1.3), [3]), they jbeeguivalent they have isomorphic
matroids, i.e. MA~th = (Ath,Atl) = MA~Gt2 = (AGtz’Atz) and isomorphic partition
complexes, i.e.NBCg (Mg&tl) = NBC4 (MfTE;tz) via equivalent hypersolvable orders
which give rise into isomorphic standa’t’elalgebrasAAt1 = Ap,,- O

Theorem (4.8):
Under the assumptions of theorem (4.6), we hfbé/andZ;t areL,-equivalent, for

all t € C\ {0}. Thus Jambu's-Papadima’'s deformation preservefatiinee intersection
pattern up to codimensiagn then it destroyed all the dependent sectiongk greater
than p among the blocks of the induced partitibli from 1 and replaced it by
independent sections which add new face8B€, (M, ) = NBC,(M,) to deform it into
the partition complex‘ﬁ,t(th) as follows:
i. For0<j<p andl<k<p, A; and NBC5*(M,_) are invariant under the
deformation, i.eAf= A}, f; = ff, NBC5X™1(M,,) = S’ﬁft(th) and f¢, = fit,,
ii. Forp + 1 < k < r, Jambu’s-Papadima’s deformation repladeBiCk~*(M;) =
NBCE™'(M,, )by St (4s,) by adding exactly;
T B i dy} = £y (k — D-faces.

if=
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iii. For r+1 <k < ¢, Jambu's-Papadima's deformation adding;
e B i+ di, e dy, (k= 1)-faces..
That is, theG-complex andNBC-complex of A; embedded in the&-complex and
partition complex ongt respectively. Thus, for0 <k <p+1, A’Z\G = A’gt and for
0<k<p M, =M.
Proof: By applying theorem ((1.4), [3]4; andZ;t are £,-equivalent, for allt € C \

{0}. That is Jambu’s-Papadima’s deformation methodtrogsd all the dependent
sections among anyp + 2)-different blocks ofIl’ and replaced it by independent
sections which add neWBC bases of4,. In fact, the one to one correspondegce
A; = A . which respects the lattice intersection patterntagodimension twog :

—_—

L,(A;) = LZ(Z;t), define a one to one correspondegcell’ = IT’, with respect the
same hypersolvable ordering Af; andZ;t, (i.e. @ gives each one ol andZ;t the
samed-vector). Therefore,
¢ : Sp(Ag) = S, (Ag,) -+ (48.1)
form a one to one correspondence between the fsalissections ofl’ andIl’,, where it's
restriction onNBC5(My,.);
Onscamay) F NBCs(Mag) = @(NBCs(My,)) © Sr, (Ag,);

define an injection between the broken circuitsplexes. That is, the deformation start
with embeddingNBC,(M,.) as a subcomplex ofSﬁ,t(Ith)since all the no broken
circuits of A; are invariant under the deformation, then we camstucts the broken
circuit complexSlT,t(th) of th by using the deformation method as follows:
For (i): For0 <j <p andl < k < p, the equivalent lattices pattern up to codimension

p of A; andA;, give rise into a bijection;, : A7= A} of (j)"-faces of thes-

complexes and the restriction @f;y on NBCék_l) (MAG) forms a bijection;

(k-1) . (k—-1) ~ TN
NBCék_l)(MAG) : NBCﬂ (MA(;) - SII_[((AGt)I

of broken circuit complexes which keep)EBCék_l)(MAG) invariant under the
deformation.

For (ii): Forp + 1 < k < r, those faces which are the minimal non-facesV&fC.(M,)
of dimension(k — 1) are deformed by jambu’s-Papadima’s deformationhoubt
which added new(k — 1)-faces by the restriction of (4.8.1) o8, (4,)\
NBCE (My,);

(k=1)
sk (A)\WBCE ™ (Mag)
NBCS ™ (Ma,)) < Sf5, (A,

i.e. we add exactl{sf, (45)| — INBCSV (My4,)1, (k — 1)-faces.

For (iii): Forr+1 <k < ¢, Jambu’'s-Papadima’s deformation method addedchalie
faces of dimensiorfk — 1) by the isomorphism between the partition complexes
O k-1) : SK(Ag) = 5§7t(/“1;t), where the number of such faces is equal to

k— —_— _
: SE(A)\NBCS ™ (M,,) = @* D (SE, (4p)\
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Finally, for eachd < k < p, A andZ;t have the samg,, kaG andH (A, k + 1) which is
produced that fol0 < k <p + 1, A’Z\G = A’gt and for0 < k <p, M, = M{ as freeA-
moduleso
Corollary (4.9):

Under the hypotheses of the theorem (4.6} I £-generic, i.em(G) = |V| = ¢,
thenp = V| — 2 andNBCL™* (M) = NBCL1(M,,) has facets aBb © A with BNIT'; =
@ and |B| =, WherefrA_G1 = |V| — 1. Jambu's-Papadima's deformation lettikfyy ,=
NBCk=*(M,) invariant for1 <k <r—1 and added just one — 1-face to deform
NBCL™'(Mg) = NBCL™'(M,,) into S (4;,). That is, the deformation added just dhe
face to deform NBC,(M,,) = NBCo(M;) into the partition complexSg;, (4g,).
Therefore, for0 < k <r, Af = Af and for0 < k <r -1, M, = Mf, where there is a
monomorphisnM,. & ML,
Proof: This is an application of theorems (2.7), (3.28) &.8).0
Corollary (4.10):

Suppose we have the assumption of theorem (4.8)|Wjt= 4, thenG is generic,
p = 2. Jambu's-Papadima's deformation kedfs NBCS(M;), AS and NBC3(M;)
unchanged and defortVBC3(M;) into S%t(ifgt) by adding just one-face. Then,
Jambu's-Papadima’'s deformation destroys the depe#figction ofA; and replaced it
by one4-face to obtairf%t(ﬁgt), and;

x(Ag,t) = t* + 4t3 + 6t2 + 4t + 1;

That is for 0 <k <3, Ak = A’gt and for 0 <k <2, M, = M, where there is a
monomorphisn; & Mi.
Proof: By applying theorem (3.31), i¥7| = 4 thenG is generic and by applying corollary
(4.9), our aim is holda
Corollary (4.11):

Under the assumption of theorem (4.6), the redtiodology group,

~ (27 ifd=rk(Mg)—1=m-2,
Ha(Be) = {0 ifd #rk(M;)—1=m—2’

whereq = (—1)"x(A;) andNBC4(M,_) has top-dimensional reduced homology;

~

Ay (NBCo(My,)) = 2°("46), wherep(M) = (1) (NBCa(M,,) ).
Proof: By applying theorem ((7.7.2), [6]) and theorem&(2), [6]) sincerk(M;) = m —
1.
Example (4.12):

Let G =(V,§&) be a graph such that V={1,23,45} and
€ ={[1,2],1,5],[2,5],12,3],[3,4], [4,5]}, as shown in the following figure:

AN
v/

Figure (4.1)
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The graph G is a hypersolvable graph with 5-vertices and Hp
n=(1,,1,,I;,1,,IIs) with d-vector, d = (1,2,1,1,1). The graphic matroidV; =
(G,Ap), is defined orG by lettingA;= Uj_oAg,, Where;

Do, =112,...6}, Ap={{i,j}|1<i<j<6} De,={{ijk}|1<i<j<k <6}\
{1,2,3}and Ag,= {{i,j, kp}|1 <i<j <k <p<6}\{1,234},{1,235},{1,236},
{3,4,5,6}}. That is thd-vector ofA is f = (6,15,19,10).
In fact G is not supersolvable, sind& has one singular block Bs. So A is not
supersolvable arrangement and from theorem (4.5);

NBC<(Mg) # Su(4¢)-
By applying theorem (4.6), the broken circuit coexpNBC,(M,;) of G, is defined as;
NBCL(M;) = Ut_,NBC.,*(M;). That is the f-vector of NBC.(M;) is f2 =
(1,6,14,16,7). And yx;(t) = xp,(t) = t* + 6t + 14t*> + 16t + 7. The type of the
Cohen-Macaulay ringA,, is h, = B,(Ay,) = f,¢ =7 and it has a minimal free
resolution;

0—> M, > M3 > M; > My = My — Ay, — 0

is completely determined by tifevector of NBCL (M), f26 .

By applying construction ((3.24), case (l.1)), twpersolvable Jambu's-Papadima’s
vertical deformatioq4;,},ec of 4; in C° x € = C° is defined as;

Q(th) = (% — x2) (%1 — x5) (%3 — x5) (2 — x3) (%3 — x4) (x4 — X5 + X6t);
for eacht € C and by the same hypersolvable ordering ptet;

H," = Ker(x; — x,), H,' = Ker(x; — x5), Hs" = Ker(x, — x5),

H,"' = Ker(x, — x3), Hs" = Ker(x; — x,) and Hs' = Ker(x, — x5 + x4t);
where the Hpll, = (11,11, 113, 11y, TIs) = ({H; "}, {H,", H3"}, {H,}, {Hs"} {He';
have the samé-vector,d = (1,2,1,1,1) which shows that the blocks,, I1,, I15, IT, must
be kept unchanged by the trivial lift and the bldbklifts to C°, by put@, = (ay, A4t),
where;

I {o if H ey, M, M,

H 1 if H e Ilg '
le.
@y, = (1,-1,0,0,0,0), @, = (1,0,0,0,—1,0), @, = (0,1,0,0,—1,0), &, = (0,1,—1,0,0,0),
@y, = (0,0,1,-1,0,0) and @y, = (0,0,0,1,-1,1). From theorem (4.8)p =3. That is,
NBCS(M,,), NBCA(M,,), NBC2(M,,) unchanged under the deformation, £ = f;*.
Jambu's-Papadima’s deformation repladéBC3(M,,) by S%t(AZt) and by adding
exactly two 3-faces{2t,4¢,5¢% 6!} and {3¢, 4¢,5¢%, 6'}. Jambu's-Papadima’s deformation
destroys all the dependent 5-section 4f and replaced it by two 4-faces,
{1¢,2¢, 4 5t 6t} and{1%, 3%, 4%, 5¢, 6t} to obtainsgt(ﬁgt) and we havel; and4;, are
Ls-equivalent. Thus, fod < k < 4, A} = A% and for0 < k < 3, M, = Mj.
0 — M{ — M; — M — M; — M{ — Mg — Az — 0.

Finally, the reduced broken circulVBC.(M;) of M, was computed by applying

definition (4.2), that i#%dl\’lc) = (1,5,9,7,0). And figure (4.1) includes realization of

NBC,(M;) andNBC,(M) complexes;
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5 ﬁ%
NBC,(M;) NBC,(M)
Figure (4.2)
By a applying corollary (4.11), we have;
~ _(Z ifd=3 .
Ha(Bo) = {0 ifd =3 2%
H,(NBC(M,,);Z) = 7%

where,8(M) = (-1)*y(NBC<(M,,)) and X(mﬂ(MAG)) = 2.
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