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Abstract: 
This paper is devoted to study the hypersolvable graphic arrangements which are 

originally introduced by Papadima and Suciu in 2002. Motivated by our aim, we defined 
the hypersolvable partition (which we denoted by Hp), and the hypersolvable ordering on 
a graph, in order to introduce the existences of them as necessary and sufficient 
conditions of any graph to be hypersolvable. On the other hand, we studied the 
hypersolvable graphic matroids and we introduced a comparison between the 
hypersolvable graphic matroid which is not supersolvable and its deformed supersolvable 
matroid that obtained from Jambu's-Papadima's deformation method in 1998-2002. 
Finally, this paper included some of applications and illustrations. 
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(1) Introduction: 

By a hyperplane � in a finite dimensional vector space � over a field � = ℝ	or	ℂ, 
we mean an affine subspace of dimension (dim� − 1 = � − 1) and an arrangement � is 
a finite collection of hyperplanes � in �. The variety of � is �(�) = ⋃ ��∈�  and its 
complement is �(�) = �\⋃ ��∈� . One of the essential problems in the topological 
study of hyperplane arrangement is, how we can reflect the combinatorics of � which are 
encoded in the associated intersection lattice �(�), (which is forms a geometric lattice), 
into topological information about the topological structure of �(�). 
In section (2), we review a brief summary of a notion “hypersolvable arrangement”, 
which was originally introduced by Jambu and Papadima in (1998, [8]) and (2002, [9]) as 
a generalization of supersolvable (Stanly) class (1972, [21]). And we looked more closely 
at the construction of a “hypersolvable partition”, Π = (Π�, … , Πℓ) on the hyperplanes of 
a hypersolvable arrangement � that induced from its hypersolvable analogue, for more 
details see [2]. Naturally, the properties of the blocks of Π define a hypersolvable 
ordering on the hyperplanes of � by the collinear relations which is denoted by ⊴ (see 
definition (2.4)). As well as a lot of various examples and fundamental results were 
specified throughout this paper. Also, we review the notion of NBC (no broken circuits) 
of �. Where by a circuit ! ⊆ � we mean a minimal (with respect to inclusion) dependent 
set of hyperplanes and it has a corresponding broken circuit !̅ = ! ∖ {�}, where � is the 
smallest hyperplane in ! via a fixed ordering on the hyperplanes of �. We call ' ⊆ � is 
NBC base, if it contains no broken circuit. Note that such a set must be independent, then 
we denoted ' by (-NBC base if |'| = (. by �'!*(�) we denoted the set of all +-�'! 
bases of � and �'!(�) = ⋃ �'!*(�)	,*-� . 
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 The set of all the NBC bases of � forms an explicit bases of the cohomological 
group of �(�), we refer the reader to [13] as a general reference. Ali in her thesis [2], 
studied the concept of "NBC bases" of any hypersolvable arrangement. 

Jambu and Papadima in ([8] 1998 and [9] 2002) define a vertical deformation 
method which deformed the hypersolvable arrangement � with .-singular blocks into 
supersolvable arrangement �/ = �/� by one-parameter family of arrangements {�/0}0∈ℂ in 
ℂ, × ℂ2 = ℂℓ, with preserving all the collinear relations of �, i.e. this method preserves 
the lattice intersection pattern up to codimension two ℓ3(�) = {' ⊆ �│	|'| ≤ 3} 	≈ℓ3(�/). An algorithm to compute the deformed hypersolvable arrangement �/ by using the 
hypersolvable partition analogue was given in [2], with a comparison between the 
structures of the NBC bases of � and the structures of the NBC bases of �/, which enables 
us to see the deformed properties in each block of �. 

Graph theory is a fundamental and powerful mathematical tool for a wide range of 
applications. Many problems are arising in such various fields as chemistry, industrial and 
electrical engineering, transportation planning, management, marketing, and education 
can be posed as problems from graph theory [11]. In the network can be modeled by a 
graph. Conversely, any graph can also be considered as a topological structure of some 
interconnection network [10]. In section (3) we specialized on the “hypersolvable graphs” 
which is firstly defined by Papadima and Suciu in (2002, [14]). In general, if 8 is a finite 
simple non oriented graph and �9 be the corresponding graphic arrangement, then the 
correspondence 8 ↦ �9 gives a map from the class of finite simple non oriented graphs 
into the class of arrangements. This map may be used to "pull back" results concerning 
arrangements to results concerning graphs. Thus we will used this duality between the 
notions “graphs” and “graphic arrangements” to reflect some known results in the class of 
hypersolvable arrangements into the class of hypersolvable graphs by using hypersolvable 
partitions analogue. In section (3) we define the notion a "hypersolvable partition" Π = (Π; , ΠԐ) of a graph 8 which inherits to 8 a fashion as a hypersolvable graph and we 
proved that the existences of it as a necessary and sufficient condition of any graph to be 
hypersolvable.  

 Moreover, in section (3) we study certain special central arrangements obtained 
from finite non oriented graphs, they are called graphic arrangements and we specialized 
on the hypersolvable graphic arrangements in order to introduce applications of the 
hypersolvable partition on a hypersolvable graph.  

Section (4) is devoted to introduce the notion of "Matroids". A matroid is a pair  � = (�, Δ), where � is a finite set and ∆ is a non-empty collection of subsets of � called 
independent sets such that ∆ forms a simplicial complex and every induced subcomplex 
of ∆ is a pure, i.e. if ' ⊆ �, the maximal elements of ∆ ∩ 2A have the same cardinality, 
where 2A = {!	 ⊆ �		|! ⊆ '}. That is a matroid � is essentially a set with some kind of 
'independence structure' defined on it. With a finite matroid � there associated several 
simplicial complexes that are interrelated in an appealing way. They carry some of 
significant invariants of � as face numbers and Betti numbers that give rise to useful 
algebraic structures. Such complexes are: the 8-complex ∆, the broken circuit complex 	�'!⊴(�) and the reduced broken circuit complex �'!BBBBBB⊴(�) via a fixed ordering ⊴ of 
the underlying set � of �. In particular, the broken circuit complex carries the chromatic 
properties of �. The homology of geometric lattice complexes was determined in the 
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pioneering work of Folkman (1966), see [6]. On the other hand, Folkman’s theorem for 
homology made the geometric lattices, one of the motivating examples for the theory of 
Cohen-Macaulay Posets (see Stanley, [19]). Orlik and Solomon (1980), showed that the 
singular cohomology ring of the complement of a complex arrangement of hyperplanes 
can be described entirely in terms of the order homology of the geometric lattice of 
intersections. Hence in these connections, the geometric lattice homology is related to 
interesting applications of matroids within mathematics. In ([2], 2010), Al-Ta'ai and Ali 
define the hypersolvable partition complex CD(�) of a hypersolvable matroid � = (�, ∆) 
and some applications was investigated.  

Let E∆ be the homogenous ideal of the polynomial algebra in F-indeterminate, A = �[I�, … , IJ] generated by all the "minimal" non-faces of ∆. The ring A∆ = A E∆⁄  was 
first considered by M. Hochster (who suggested it to student 8. Reisner, see [7] for 
further study) and independently by this researcher [19] and [22]). Motivated by the fact 
that the homological information of M is encoded in the associated minimal free 
resolution of  A∆; 0 ⟶ �O ⟶�OP� ⟶⋯⟶�R ⟶ A∆ ⟶ 0;  
section (4) included this concept, (see section (2), [4]). In section (4) we studied the 
hypersolvable graphic matroid which associates to a hypersolvable graph and some 
results were given. Finally, section (4) included some of applications and illustrations of 
hypersolvable graphic matroids. 
 
 
(2) THE HYPERSOLVABLE PARTITION AND THE NBC-BACES OF A 

HYPERSOLVABLE ARRANGEMENT  

The aim of this section is to review a brief summary of the notion a "hypersolvable 
partition" of an arrangement that is defined by Ali in ([2], 2007). 
Definition (2.1): [3] and [13] 

1. A partition Π = (Π�, … , Πℓ) of an arrangement � is said to be independent, if for 
every choice of hyperplanes �S ∈ ∏S for 1 ≤ ( ≤ ℓ, the resulting ℓ-hyperplanes are 
independent, i.e.  �+{�� ∩ …∩	�ℓ} = ℓ. Let U ∈ �(�) and Π = (Π�, … , Πℓ) be a 
partition of �. Then the induced partition ΠV is a partition of �V with blocks are 
the non-empty subsets ΠS ∩ �V, 1 ≤ ( ≤ ℓ. 

2. Call C = {��, … , �*} a +-section of  Π  if, for each 1 ≤ ( ≤ +, �S ∈ ΠWX, where 
1 ≤ Y� < ⋯ < Y* ≤ ℓ. It has been noticed that if Π is independent, then all it's +-
sections are independent. By CD*(�) we denoted the set of all +-sections of  Π and CD(�) = ⋃[-�ℓ CD*(�). 

Definition (2.2): [3] 
Let � be a central �-arrangement. A partition  Π = (Π�, …	 , Πℓ) of  � is said to be 

hypersolvaple with length ℓ(�) = ℓ, exponent vector, (or	\-vector), \ = (\�, … , \ℓ), 
(where \S = │ΠS│ for, 1 ≤ ( ≤ ℓ) and denoted by Hp, if  │Π�│ = 1 (i.e. Π� is a 
singleton) and for fixed 2 ≤ ] ≤ ℓ, Π^ satisfies the following properties: 
(closed property of _`): For any ��, �3 ∈ Π� ∪ …	∪ Π^, there is no hyperplane � ∈
Π^b� ∪ …	∪ Πℓ such that  �+{��, �3, �} = 2. 



4 
 

(complete property of _`): For each  ��, �3 ∈ Π^, there exists � ∈ Π� ∪ …	∪ Π^P� such 
that �+{��, �3, �} = 2. It has been noticed that, form closed property of Π^, the 
hyperplanene � is uniqe and we will denote it  by � = ��,3. 
(solvable property of _`): If ��, �3, �c ∈ Π^, then the hyperplanes, ��,3, ��,c, �3,c ∈ Π� ∪…	∪ Π^P�, either ��,3 = ��,c = �3,c or  �+d��,3, ��,c, �3,ce = 2. 

For 1 ≤ ] ≤ ℓ, we define the rank of block Π^ of Π as �+(Π^) =
�+ f⋂�∈Dh∪…∪Di�j. We call Π^ singular if �+(Π^) = �+(Π^P�) and we call it non singular 

otherwise. An Hp Π is said to be supersolvable if it is independent. Observe that �+(Π^P�) ≤ �+(Π^) in general and if ℓ ≥ 3, then every ΠSh , ΠSl , ΠSm ∈ Π are independent, 
where 1 ≤ (� < (3 < (c ≤ ℓ. 
theorem (2.3): [12] 

Let � be an essential central complex �-arrangement. � is a hypersolvable if, and 
only if, � has an Hp Π and � is supersolvable it has a supersolvable partition. 
Definition (2.4): [2] 

Let � = {��, … , �J} be a hypersolvable �-arrangement with Hp Π = (Π�, … , Πℓ) 
and exponent vector \ = (\�, … , \ℓ). For 1 ≤ ( ≤ ℓ, partitioned ΠS into two blocks as; 
ΠS∗� = {�Sh , … , �So} ⊆ ΠS such that �+p�Sh , … , �Soq = 2 and ΠS∗3 = ΠS ∖ ΠS∗�, such that, 

�+p�Sh , … , �So , �q = 2 for each � ∈ ΠS∗3. Define a hypersolvable order of � associated 
to Hp Π and denoted by ⊴, as follows: 

1. If  �S ∈ ΠS and  �̂ ∈ Π^ with 1 ≤ ( < ] ≤ ℓ, put  �S ⊴ �̂ . 
2. For fixed 1 ≤ ( ≤ ℓ, we give the hyperplanes of the subblock ΠSh of  ΠS an 

arbitrary total order with preserving the order of ΠSl and Π^ form 1 ≤ ] ≤ ( − 1, as 
follows: if ��, �3, �c ∈ ΠS with �+(��, �3, �c) = 3, we put d�Sh , �Sl , �Sme ={��, �3, �c}, such that �Sh ⊴ �Sl ⊴ �Sm if, and only if, �Sh,Sl ⊴ �Sh,Sm ⊴ �Sl,Sm.  

Proposition (2.5): [2] 
Let � be a hypersolvable arrangement with an Hp Π = (Π�, … , Πℓ) and �+(�) = �. 

Then for 2 ≤ ( ≤ �, every an  (-NBC base of � must be an (-section of Π. 
Definition (2.6): [3] 

Given two �-arrangements  �� = {���, … , �J�} and  �3 = {��3, … , �J3}: 
1. We will say �� and  �3 have the same lattice or �-equivalent and denoted by �(��) ≈ �(�3), if for each 1 ≤ (� < ⋯ < (* ≤ F and 1 ≤ + ≤ F we have �+(�Sh� , … , �So� ) = �+(�Sh3 , … , �So3 ). 
2. For 2 ≤ + ≤ � − 1, set ℓ*(�S) = {'S ⊆ �S│	|'S| ≤ + + 1} to be the lattice 

intersection pattern up to codimension + of  �S and ( = 1,2. We say �� and  �3 are ℓ*-equivalent and denoted by  ℓ*(��) ≈ ℓ*(�3)  if for each 1 ≤ (� < ⋯ < (̂ ≤ F 
and  ] ≤ + + 1 we have �+(�Sh� , … , �Si� ) = �+(�Sh3 , … , �Si3).   

Note that, if  �� and  �3  are �-equivalent, then they are ℓ*-equivalent for 2 ≤ + ≤ � − 1. 
But the converse needs not to be true in general, see [2]. 
Theorem (2.7): [2] 

Let � be a hypersolvable �-arrangement with �+(�) = � ≥ 3 and Hp, Π =(Π�, … , Πℓ) has an exponent vector \ = (1,… ,1). Then:- 
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1. If  |�| = ℓ = �, then � is supersolvable and for 1 ≤ ] ≤ �; 
ŝ = t�'!̂ (�)t = f,^j. 

2. If � < Y(�) = � + 1 ≤ |�| = ℓ, then � is �-generic and for 1 ≤ ] ≤ �;  
ŝ = t�'!̂ (�)t = fℓ^j 	and		s, = |�'!,| = 	 pℓ,q − pℓP�, q = pℓP�,P�q. 

3. Y(�) ≤ � < |�| = ℓ, then for 1 ≤ ] ≤ �, ŝ = t�'!̂ (�)t ≤ fℓ^j. 
 

(3) THE HYPERSOLVABLE PARTITION GRAPHS AND APPLICATIONS OF THE 
HYPERSOLVABLE PARTITION ON A HYPERSOLVABLE GRAPH  
 
This section is devoted to define a hypersolvable partition of a graph 8 which 

inherits to 8 a fashion as a hypersolvable graph.  
Definition (3.1): [13] 

A finite simple graph 8 = (�, Ԑ) is an ordered pair consisting of the set �of vertices 
and the set Ԑ of edges with the following two conditions: 

1. � is a finite set, 
2. Ԑ is a collection of 2-element subsets of  �. 

A graph 8 = (�, Ԑ) is called complete when the set Ԑ is the set of all 2-element 
subsets of  �. From now on we will use the square brackets [(, ]] to denote an edge 
{(, ]} ∈ Ԑ in order to distinguish it from the subset of two vertices. 
Definition (3.2): [13] 

Let 8 = (�, Ԑ) be a graph. The chromatic function w(8, x) is a function define on 
the set of nonnegative integers by; 

w(8, x) = The number of colorings of 8 with x colors. 
Since the chromatic function is a polynomial. Then from now we call it the chromatic 
polynomial of  8.  
Definition (3.3): 

Let 8 = (�, Ԑ)	be a connected graph with a finite set of vertices, i.e. � = {y�, 
…	, yW}. A pair of partitions, Π9 = (Π; , ΠԐ) is said to be a hypersolvable partition of 8 
and denoted by Hp Π9, if Π; = (Π�; , … , ΠW‒�; ) and ΠԐ = (Π�Ԑ, … , ΠℓԐ) are partitions of � 
and Ԑ respectively, such that the following properties are satisfied: 
HP1: Π�; = {y�, y3} and Π�Ԑ = {{�}, such that {� = [y�, y3], i.e. Π�Ԑ is a singleton. 
HP2: For each  2	 ≤ 	]	 ≤ 	Y‒ 1, the block Π;̂ is a singleton. 
HP3: For each  2	 ≤ 	+	 ≤ 	ℓ, the block	Π*Ԑ satisfying the following properties: 
HPc(: For each {Sh , {Sl 	 ∈ 	Π�Ԑ 	∪ …	∪ 	Π*Ԑ , there is no edge { ∈ Π*b�Ԑ 	∪ …	∪ 	ΠℓԐ such 

that {{Sh , {Sl , {	} forms a set of edges of a triangle. 
HPc((: There exists a positive integer 1 < Y* ≤ Y‒1, such that �* =	Π�; 	∪ …	∪ 	ΠWo;  

is a subset of � that contains all the end points of the edges in Π�Ԑ 	∪ …	∪ 	Π*Ԑ, i.e. 
8* = (�* , Π�Ԑ 	∪ …	∪ 	Π*Ԑ) forms a subgraph of 8. Then, either; 
1. Π*Ԑ = {{} such that �* =	�*P�, 

or; 
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2. Π*Ԑ = {{Sh , … , {S~o}, such that �*	\�*‒� = ΠWo�hb�; = ΠWo; = {y} and for 

1 ≤ 	]	 ≤ \*, {Si = [ySi , y], for some ySi ∈ Π�; 	∪ …	∪ 	ΠWo�h; , where 

{ySh , … , yS~o} ⊆ �*P� = Π� 	∪ …	∪	ΠWo�h induces a complete subgraph of 8. 

The number of the blocks of ΠԐ is called the length of Π and denoted by ℓ(8) = ℓ. 
For 1	 ≤ 	+	 ≤ 	ℓ, let \* = 	│Π*Ԑ│and \ = (\�, … , \ℓ) is said to be the exponent vector 

(or \-vector) of Π. Define the rank of  Π*Ԑ as �+	Π*Ԑ = │�*│ − 1 and �+(8) = �+	ΠℓԐ =Y − 1. We will call the block Π*Ԑ singular block, if │�*P�│ = │�*│ and non-singular 

otherwise, i.e. Π*Ԑ is non-singular if │�*\�*P�│ = 1.  
A hypersolvable partition Π is said to be supersolvable if, and only if, ΠԐ has no 

singular block. 
We will call a hypersolvable partition Π9, generic if ℓ	 ≥ Y, the exponent vector  \ = (1, … ,1) and every +-eadges of Ԑ cannot be an	+-cycle, 3 < + ≤ Y − 1. 

Remark (3.4): 
It has been noticed that; 

1. For 1	 ≤ 	+	 ≤ 	ℓ, the positive integer Y* needs not to be equal to + − 1 in general. 
2. ℓ	 ≥ 	Y	‒ 	1 = �+(8). 
3. ℓ = Y	‒ 	1 if, and only if, Π is supersolvable. 
4. Π3Ԑ cannot be a singular block, for │�3│ = 3. 
5. We call HPc( the closed property of Π*Ԑ. 

Corollary (3.5): 
For 3 ≤ + ≤ ℓ, if Π*Ԑ is a singular block, then Π*Ԑ is a singleton, i.e. │Π*Ԑ│ = 1. 

Proof: By contrary, if Π*Ԑ  contains a triangle, then |�Wo\�Wo�h| ≥ 3. Which contradicts 
our assumption that (8, �) is solvable, and from definition (3.1), |�9\�[| = 0,1	or	2. □ 
Note (3.6): 

The worth point to note here that every supersolvable graph forms a connected 
hypersolvable graph. So, there is no loss of generality in assuming that all the graphs that 
will be used from now on are connected. 
Theorem (3.7): 

Let	8 be a connected graph. Then 8 is hypersolvable if, and only if, 8 has a 
hypersolvable partition. 
Proof: Firstly, suppose 8 is a hypersolvable graph, we need to show that 8 has an Hp. 
Since 8 is a hypersolvable graph, hence 8 has a hypersolvable composition series say, 8� ⊂ ⋯	⊂ 8* ⊂	8*b� ⊂ ⋯	⊂ 8ℓ. 
For  1 ≤ + ≤ ℓ, if 8* =	 (�* , Ԑ*), then put; 

1. Π�; = �� and  Π�Ԑ = Ԑ�. 
2. For  2 ≤ ] ≤ ℓ, deduce that, if �^\�^P� = {y, y′}, (i.e. y, y′ ∉ �^P�), then for each y′′ ∈ �^P�, there exist paths from y′′ into y and y� respectivly. But {y��, y, y′} can 

not be a triangle, since there is no edge of Ԑ^P� contains y or y′ as end point. Thus, 
without loss of generality we can rearrange the composition series above such that 
our choices will be either �^\�^P� = ∅ or �^\�^P� = {y}. Therefore, there exist 
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2≤ ]3 < ]c < ⋯ < ]WP� < ℓ, such that �^o\�^oP� is non-empty sets, 2 ≤ + ≤
Y	‒ 	1, where Y = │�│. Put; 

Π*; = �^o\�^oP�. 
3. For  2 ≤ ] ≤ ℓ, put  ΠԐ̂ = Ԑ^\Ԑ^‒�. 

Deduce that Π9 = (Π; , ΠԐ) = ((Π�; , … , ΠW‒�; ),(Π�Ԑ, … , ΠℓԐ	)) forms a hypersolvable 
partition of 8. 

Conversely, suppose that G has a hypersolvable partition, say; 
Π9 = (Π; = (Π�; , … , ΠW‒�; ), ΠԐ = pΠ�Ԑ, … , ΠℓԐq). 

Put,  8� = (�� =	Π�; , Ԑ� =	Π�Ԑ). 
For  2 ≤ + ≤ ℓ; 8* = (�* =	�* , Ԑ* =	Π�Ԑ ∪ …	∪ Π*Ԑ); 
where �* =	Π�; ∪ …	∪ ΠW*;  as given in definition (3.3). It is clear that 8� ⊂ ⋯ ⊂	8* ⊂	8*b� ⊂ ⋯ ⊂	8ℓ forms a hypersolvable composition series of 8. □ 
Theorem (3.8): 

A connected hypersolvable graph 8 is supersolvable if, and only if, 8 has a 
supersolvable partition. 
Proof: Suppose 8 is a hypersolvable graph which is supersolvable. Then 8 has a 
hypersolvable composition series:  8� ⊂ ⋯	⊂ 8WP� = 8. (ℓ = Y − 1) such that: 

1. For each 1 ≤ + ≤ Y − 1, there is a single vertex in 8*\8*P� say y*, 
2. The subgraph of 8* that induced by y* and its neighbors in 8* is complete. 

By applying the proof of theorem (3.7) above the hypersolvable composition series 
induces a hypersolvable partition say; Π9 = (Π; = (Π�; , … , ΠWP�; ), ΠԐ = (Π�Ԑ… ,ΠWP�Ԑ )). 
Thus, ΠԐ has no singular block, thus Π is supersolvable. 

Conversely, suppose that 8 is a hypersolvable graph has a supersolvable partition 
say; Π9 = (Π; = (Π�; , … , ΠWP�; ), ΠԐ = (Π�Ԑ… ,ΠWP�Ԑ )). 
Since ΠԐ has no singular block, hence ℓ = Y − 1. If we apply the proof of theorem (3.7), 
we have; 8� ⊂ ⋯	⊂ 8* ⊂ 8*b� ⊂ ⋯	⊂ 8WP�, 
is a hypersolvable composition series. Let �*\�*P� = {y} and let {ySh , … , yS~o} be the set 

of its neighbors of; 8* = (Π�;⋃…⋃Π*; , Π�Ԑ ∪ …∪ Π*Ԑ). 
Hence, Π*Ԑ = {{Sh , … , {S~o} such that {Si = [ySi , y],  1 ≤ ] ≤ \*. From definition (3.3) of 

the hypersolvable partition we have dySh , … , ySoe induced a complete subgraph of 8*P� 
and if we add the blocks 8*\8*P� = (Π*; , Π*Ԑ), we obtain that {ySh , … , ySo , y*} is a 
complete subgraph of 8* and this finishes the proof. □ 
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Lemma (3.9): (The complete property of  _�Ԑ ) 
Let 8 be a connected hypersolvable graph with a hypersolvable partition Π9 =(Π; , ΠԐ). For 2 ≤ + ≤ ℓ, if {�, {3 ∈ Π*Ԑ , then there exists a unique { ∈ Π�Ԑ⋃…⋃Π*P�Ԑ  

such that {{�, {3, {} forms a triangle. 
Proof: Since {�, {3 ∈ Π*Ԑ , hence tΠ*Ԑt ≥ 2 and by applying definition (3.3) we have 
�*\�*P� = {y} such that {� = �ySh , y� and {3 = �ySl , y�. That is ySh and ySl form neighbors 
of y. But the set of all neighbors of y is a complete subgraph of 8. Thus [ySh , ySl] forms an 
edge in Π�Ԑ ∪ …	∪ Π*P�Ԑ  and {{�, {3, {} is a triangle. On the other hand, the graph 8 is 
simple, so { must be unique. □ 
Notation: 

Since { must be unique, we will denoted it by {S,^. 
Lemma (3.10): (The solvable property of  _�Ԑ ) 

Under the hypotheses of lemma (3.2), if {�, {3, {c ∈ Π*Ԑ, then {{�,3, {�,c, {3,c} is a 
triangle. 
Proof: Since {�, {3, {c ∈ Π*Ԑ, hence tΠ*Ԑt ≥ 2 and �*\�*P� = {y}. Let {� = [ySh , y], {3 = [ySl , y] and {c = [ySm , y]. It is clear that {�,3 = [ySh , ySl], {�,c = [ySh , ySm], {3,c =[ySl , ySm]. That is, {{�,3, {�,c, {3,c} forms a triangle. □ 
Definition (3.11): 

Let 8 be a hypersolvable graph with hypersolvable partition. Define a hypersolvable 
order on 8	associated to an Hp Π9 = (Π; , ΠԐ) and denoted by ⊴, as follows: 

1. Put an arbitrary order on the vertices of  Π�;. 
2. If yS ∈ ΠS; and ŷ ∈ Π;̂ such that; ( < ], put yS ⊴ ŷ . 
3. If { ∈ ΠSԐ and {ʹ ∈ ΠԐ̂ such that; ( < ], put { ⊴ {ʹ. 
4. If {, {′, {′′ ∈ Π*Ԑ, set{Sh ⊴ {Sl ⊴ {Sm 	⟺ {Sh,Sl ⊴ {Sh,Sm ⊴ {Sl,Sm, where; 

d{Sh , {Sl , {Sme = {{, {′, {′′}. 
If 8 is supersolvable, we will call ⊴, a supersolvable ordering. 
Theorem (3.12): [17] 

A graph 8 = (�, Ԑ) is supersolvable if, and only if, there exists an ordering y�, y3, … , yW of its vertices such that if 1 ≤ ( < ] < + ≤ Y, such that [yS , y*] ∈ Ԑ and �ŷ , y*� ∈ Ԑ, then �yS , ŷ � ∈ Ԑ. Equivalently, in the restriction of 8 to the vertices y�, … , yS 
the neighborhood of yS is a clique. 
Proposition (3.13): 

Let  8 = (�, Ԑ) be a supersolvable graph with a supersolvable partition Π9 =(Π; , ΠԐ). Via a supersolvable ordering ⊴ on 8, if [yS , y*] ∈ Ԑ and [ŷ , y*] ∈ Ԑ, then 
[yS , ŷ ] ∈ Ԑ, where 1 ≤ ( < ] < + ≤ Y. 
Proof: From definition (3.3) of the supersolvable partition Π9 = (Π; , ΠԐ), we have yS , ŷ , y* distributed among the blocks of  Π; as follows; 

yS ∈ ΠS;́ 	, ŷ ∈ Π^;́ 	and	y* ∈ Π*ʹ; ; 
with keeping in mind that, either Fʹ = F − 1	 or Fʹ = F, for F = (, ], +, i.e. if ( =1	and		] = 2, (ʹ = ]ʹ = 1. Then Π*ʹ; ≠ ΠJʹ; 	, F = (, ]. Since [yS , y*], [ŷ , y*] ∈ Π*ʹԐ , hence  
[yS , ŷ ] ∈ Π^Ԑ́. In fact, the neighborhood set of y* is a clique of 8. □ 
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Remark (3.14): 
Proposition (3.13) is a worth pointing out that the existence of the supersolvable 

ordering that induced from the structure of the supersolvable partition, forms a necessary 
and sufficient condition on a graph 8 to be a supersolvable graph, as shown in Stanly 
theorem (3.12). 
Definition(3.15): 

A simple connected graph 8 = (�, Ԑ) with |�| = Y > 3 is said to be generic if 
every Y− 1-eadges of Ԑ cannot be an	Y − 1-cycle. 
Proposition (3.16): 

A connected graph 8 = (�, Ԑ) with |�| = Y > 3 is generic if, and only if, 8 has a 
generic hypersolvable partition Π9 with length ℓ(8) = Y. 
Proof: It is clear that, If 8 is generic, then Ԑ contains no triangles. That is, one can simply 
construct a hypersolvable partition Π9 = (Π; , ΠԐ) of length ℓ(8) = ℓ by adding one 
edge at time. Thus Π9 is generic, since 8 contains no Y − 1-cycles. Conversely, if 8 has 
a generic hypersolvable partition Π = (Π; , ΠԐ), then Ԑ = ⋃ Π*Ԑℓ*-� , where Π*Ԑ is a 
singleton for 1 ≤ + ≤ ℓ and from the properties of the generic partition, Ԑ contains no 
Y − 1-cycles.  

On the other hand, by contrary suppose ℓ(8) > Y and let {S,^ be the kth edge of Ԑ 
via a hypersolvable order, Y < + ≤ ℓ. Deduce that, the block Π*Ԑ is singular, since 
�+pΠ*Ԑq = Y − 1, for Y ≤ + ≤ ℓ. That is, if �* =	Π�; 	∪ …	∪ 	ΠWo;  is the subset of � that 
contains all the end points of the edges in Π�Ԑ 	∪ …	∪ 	Π*Ԑ, then �* = 	�. But 8 is a 
connected graph, so without loss of generality we can construct the generic partition Π9 
such that the graph 8� = (�, Π�Ԑ 	∪ …	∪ 	ΠWP�Ԑ ) is connected. Thus there is a path of 
8�started at ( and ending at ] and the number of edges that this path passes through cannot 
exceed Y − 1, since ( ≠ ]. Also if we add the block ΠWԐ , then the subgraph 8" =
(�, Π�Ԑ 	∪ …	∪ 	ΠWP�Ԑ ∪ ΠWԐ ) is a connected subgraph of 8 that forms an Y-cycle and 
contains no Y− 1-cycles. Let ΠWԐ = {{S�,^�}. It is clear that, {S,^ ≠ {S�,^�, since 8 is a 
simple graph. i.e. Π�Ԑ 	∪ …	∪ 	ΠWP�Ԑ ∪ ΠWԐ is an Y-cycle and if we add Π*Ԑ = {{S,^}, we will 
induce a new cycle of  Π�Ԑ 	∪ …	∪ 	ΠWԐ ∪ Π*Ԑ  with length less than Y, which  contradicts 
our assumption that 8 contains no Y − 1-cycles. Therefore ℓ(8) = Y. □ 
Remark (3.17): 

We mention that; 
1. �+(�9) = |�| − 1. 
2. If 	� ⊆ 8, then �+(�[) = 2 if, and only if, � is a triangle of 8. 
3. w(8, x) = w(�9 , x). 

Proposition (3.18): [14] 
A graph 8 is hypersolvable if, and only if, the graphic arrangement �9 is 

hypersolvable. 
Corollary (3.19): 

A graph 8 = (�, Ԑ) is hypersolvable if, and only if, the graphic arrangement �9 has 
a hypersolvable partition. 
Proof: From proposition (3.18), a graph  8 = (�, Ԑ) is hypersolvable if, and only if, �9 is 
hypersolvable and by applying theorem (3.7), the graphic arrangement �9 is 
hypersolvable if, and only if, �9 has a hypersolvable partition. □ 
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Remark (3.20): 
The important points to note here are that: 

1. If 8 = (�, Ԑ) is a hypersolvable graph, then �9 has a partition Π′ = (Π�, … , Πℓ) 
induced from the hypersolvable partition Π9 = (Π; , Πℇ), as for 1 ≤ + ≤ ℓ,  �S^ ∈ Π* 
if, and only if, [(, ]] ∈ Π*ℇ. 

2. If [(�, ]�]	, [(3, ]3] and [(c, ]c] form a triangle. Then the set {(�, ]�, (3, ]3, (c, ]c} = {(, ],Y} 
contains just three vertices. Therefore, d�Sh^h , �Sl^l , �Sm^me = d�S^ , �SW, �̂We and 

�+d�S^ , �SW, �̂We = �+d(I�, … , I,)tIS = Î = IWe = 2. 

Corollary (3.21): 

Let � be a hypersolvable graphic arrangement with hypersolvable partition Π′ ={Π�, … , Πℓ}. For 2 ≤ + ≤ ℓ, if ��, �3, �c ∈ Π*, then; �+{��, �3, �c} = 3. 
Proof: By contrary, suppose �+{��, �3, �c} = 2. Since ��, �3, �c ∈ Π*, then there exist [(�, ]�], [(3, ]3], [(c, ]c] ∈ Π*Ԑ such that [(�, ]�], [(3, ]3], [(c, ]c] form a triangle. Therefore, the 
set {(�, ]�, (3, ]3, (c, ]c} = {(, ],Y} contains just three vertices. Now, from the complete 
property of the block Π*Ԑ, for the edges [(, ]], [(, Y] ∈ Π*Ԑ, there exists an edge [],Y] ∈Π*Ԑ ⋃…⋃Π*P�Ԑ  such that [(, ]], [(, Y], [],Y] form a triangle. Thus there are two edges 
from the vertex j to m and that contradicts our assumption that our graph contains no 
parallel edges. Thus, �+{��, �3, �c} = 3, as we claimed. □ 
Corollary (3.22): 

Suppose we have the assumption of corollary (3.21). Then │Π3│ = 1	or	2. 
 Proof: By applying the fact that rk(Π3) = 2 and corollary (3.21), it is clear that │Π3│ =1	or	2. □ 
Theorem (3.23): 

Let 8 be a hypersolvable graph with hypersolvable partition Π9 = (Π; , ΠԐ). Then 
the partition Πʹ = (Π�, … , Πℓ) that given in remark (3.20) is a hypersolvable partition of 
�9. 
Proof: We need to show that Πʹ satisfied the properties of the hypersolvable partition. So, 
the proof will be divided into the following steps: 
HP1: Obviously, Π� is a singleton, since Π�Ԑ is a singleton. 
HP2: For a given 2 ≤ + ≤ ℓ; 

For the closed property of _�: Let ��, �3 ∈ Π*. From the construction of Πʹ, let  
[(�, ]�], [(3, ]3] ∈ Π*Ԑ be their related edges and from definition (3.3), we have 
ΠWo; = {y}. So, ]� = y = ]3. By contrary suppose that there exists a hyperplane 
� ∈ Π*b�⋃…⋃Πℓ such that �+{��, �3, �} = 2. That is there exists [(� , ]�] ∈
Π*b�Ԑ ⋃…⋃ΠℓԐ, the related edge to � such that {[(�, y], [(3, y], [(� , ]�]} form a 
triangle. Which contradicts the closed property of Π*Ԑ. Therefore, there is no  
� ∈ Π*b�⋃…⋃Πℓ such that �+{��, �3, �} = 2. 
For the complete property of _�: Let ��, �3 ∈ Π* and let [(�, ]�], [(3, ]3] ∈ Π*Ԑ be 
their related edges. By applying the complete property of Π*Ԑ, there exists [(� , ]�] ∈
Π�Ԑ⋃…⋃Π*P�Ԑ  such that {[(�, ]�], [(3, ]3], [(� , ]�]} forms a triangle. That is there 
exists � ∈ Π�⋃…⋃Π*P�, such that �+{��, �3, �} = 2. 
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For the solvable property of _�: Suppose ��, �3, �c ∈ Π*. From definition (3.3), 
let ΠWo; = {y} and from the structure of Πʹ, let [(�, y], [(3, y], [(c, y] ∈ Π*Ԑ  be their 
related edges. In fact, from corollary (3.21), �+{��, �3, �c} = 3 and {[(�, y], [(3, y], [(c, y]} cannot be a triangle. By applying definition (3.3), {[(�, (3], [(�, (c], [(3, (c]} forms a triangle and their related hyperplanes; ��,3, ��,c, �3,c ∈ Π� ∪ …	∪ Π*P�; 
Satisfied �+d��,3, ��,c, �3,ce = 2 and this complete our proof. □ 

Construction (3.24): 
Suppose 8 = (�, Ԑ) be a hypersolvable graph with hypersolvable partition Π9 =(Π; , ΠԐ) such that ℓ > � = �+(8), (i.e. 8 not supersolvable). Let �9 be the graphic 

arrangement of 8, and Πʹ be the induced hypersolvable partition given in remark (3.20). 
Case I : If ℓ = � + 1, then we have the cases as follows: 
Case I.1 : If Πℓ be the singular block of Πʹ. Then, for each � ∈ �9, put ��� = (�� , ��), 
where 

�� = �0 if � ∈ Π�, … , ΠℓP�1 if 						� ∈ Πℓ										 . 
Case I.2 : If ΠℓP� be the singular block Π. Then for each � ∈ Π�, … , ΠℓP�, put ��� =(�� , ��x), where 

�� = �0 if � ∈ Π�, … , ΠℓP31 if 							� ∈ ΠℓP�					 . 
If �Sh ∈ Πℓ the minimal hyperplane of  Πℓ via the hypersolvable order, then for 

+ = (�, (� + 1 put ���o = (��o , ��ox) where; 

��o = �0 if �Sh,Shb� ∈ Π�, … , ΠℓP31 if �Sh,Shb� ∈ ΠℓP�												 . 
And for + = (� + 2,… , (� + \ℓ, put ���o = (��o , ��ox) where; 

��o = −
(�*��Xh ,* + ℎ*��Xh)�*  

and (�* , ℎ* , �*) ∈ ℂc/0  such that,   �*��Xh ,* +	ℎ*��Xh + �*��o = 0. 

Case II: If Πʹ has .-singular block. Then we will use iterated applications of the cases 
(I.1) and (I.2) as shown in construction ((4.1.19), [2]). 
 
Proposition (3.25): 

A graph 8 = (�, Ԑ) is a generic graph if, and only if, its graphic arrangement �9 is 
generic.  
Proof: By applying proposition (3.16) and theorem (3.23), our claim will be proved. □ 
 
Theorem (3.26): 

The following assertions are equivalent: 
1. 8 is supersolvable. 
2. Πʹ is nice. 
3. �'!(�9) = C(�9) and for 1 ≤ + ≤ �+(8); s* = ∑ ∑ …∑ \Sh\Sl …\SoℓSo-So�hb�ℓP*b�Sl-Shb�ℓP*Sh-� . 

Proof: This is a direct result of theorem ((1.2), [3]) and theorem (3.8). □ 
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Theorem (3.27): 
If �+(�9) = Y − 1 ≤ ℓ, i.e. 8 is not supersolvable, then via a hypersolvable 

ordering on the hyperplanes of �9, we have the following: 
1. Recall the definition of �(�9) in corollary (3.15). Then 2 ≤ �(�9) ≤ Y − 2 such 

that for each 1 ≤ + ≤ �(�9), �'!*(�9) = C*(�9) and �'!�(�)b�(�9) =C�(�)b�(�9)\C�(��)b�(�9)⋂'!�(��)b�(�9).  
2. If  Y = 4,  then  �(�9) = 2. 

Proof: This is a direct application of corollary ((1.4), [3]) and proposition (3.18). □ 
 
Remark (3.28): 

Let 8 be a graph with no triangles. It is clear that 8 is a hypersolvable graph and if Π = (Π; , ΠԐ) be any hypersolvable partition Π9 = (Π; , ΠԐ) of 8, then Π9 has an 
exponent vector \ = (1, … ,1) and the following theorem is to classify such graphs: 
Theorem (3.29): 

Let 8 be a hypersolvable graph with Y ≥ 3 and Hp,  Π9 = (Π; , ΠԐ) has an 
exponent vector \ = (1, … ,1). Then we have the following: 

1. If |Ԑ| = ℓ = Y − 1, then 8 is supersolvable and for 1 ≤ ] ≤ Y − 1, ŝ =
t�'!̂ (�9)t = fWP�^ j, i.e. w(8, x) = ∑ fWP�^ j xWP^P�WP�^-R . 

2. If Y(8) = |Ԑ| = ℓ = Y, then 8 is generic have just one Y-cycle and for 1 ≤ ] ≤
Y − 1, ŝ = t�'!̂ (8)t = fW^ j and sWP� = Y − 1. With respect to a fixed 

hypersolvable ordering, the maximal hyperplane � of �9 will be deformed by 
Jambu’s and Papadima’s deformation method into �  which is defined by the linear 
form: ��� = (�� , 1), where the other hyperplanes will be lifted by trivial lift. 

3. Y(8) ≤ �+(8) = Y − 1 < |Ԑ| = ℓ, then 8 is neither supersolvable nor generic 

and ŝ = t�'!̂ (8)t ≤ fℓ^j for 1 ≤ ] ≤ �, and �9 will deformed by Jambu’s and 

Papadima’s deformation method as follows: 
• For � ∈ Π* and Π* is non singular block of Π′ will deformed into �  by 

trivial lift, i.e. ��  = (�� , 0). 
• For � ∈ Π* and Π* is a singular block of Π′ will deformed into �  as 
��  = (�� , 1).   

Proof: For 1: Since |Ԑ| = ℓ = Y − 1 = �+(8), hence 8 has no singular block. Therefore 
8 is a supersolvable graph and from theorem ((1.3), [3]) is easy to check that, ŝ =
fWP�^ j, for 1 ≤ ] ≤ �+(�9) = Y − 1. 

For 2: If |Ԑ| = ℓ = Y, then by applying proposition (3.16), 8 has no singular block and it 

is a generic graph. According to theorem ((3.2.15), [2]) and proposition ((3.25), ŝ = fW^ j, 
for 1 ≤ ] ≤ �+(�9) = Y − 1 and for ] = �+(�9) = Y − 1, sWP�|�'!WP�| = pWP�WP3q =Y − 1. Where for the other claim proved only by applying construction ((3.24), case I.1), 
since ℓ(8) = Y.    
For 3: Similarly, by applying theorem ((3.2.15), [2]) for the graphic arrangement �9 
which is hypersolvable with exponent vector \ = (1,… ,1) and Y(8) ≤ �+(�9) = Y −1. On the other hand, since \ = (1,… ,1), hence any singular block of Π′ contains just one 
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hyperplane and there is no collinear relation among the blocks of  Π′. Thus by applying 
construction (3.24) our claimed is proven.□ 
Remark (3.30): 

It is worth pointing out that if �9 is a graphic 3-arrangement associated to a graph 
8 � 
�, Ԑ�, then |�| � 4, i.e. the number of such arrangements is finite and we can 
illustrate all the results given in chapter one and two in this thesis.  

If 8 is a complete 4-graph, then 8 is supersolvable. As an application of theorem 
(3.27), we easily compute the chromatic polynomial of 8; 

w
8, x� � xc r 6x3 r 11x r 6. 
Furthermore, all the other 4-graphs can be obtained from the complete graph 8 by 
deleting edges from Ԑ. So, we can simply classify it up to isomorphism of graphs as 
follows: 

1. If we remove just one edge from Ԑ, then we will obtain six 4-graphs are 
isomorphic. Their bond lattices are isomorphic and the following figure is one of 
them: 

 
Figure (3.1) 

Each one of them is a supersolvable graph and its chromatic polynomial is;  
w
8, x� � xc r 5x3 r 8x r 4. 

2. If we remove two edges from Ԑ, then we have the following: 
i. twelve isomorphic supersolvable 4-graphs with the same bonds lattices as 

given in the following figure: 

 
Figure (3.2) 

Each one of them has a chromatic polynomial;  
w
8, x� � xc r 4x3 r 5x r 2. 

ii.  three isomorphic generic 4-graphs with the same bonds lattices as given in the 
following figure: 

 
Figure (3.3) 

Each one of them has a chromatic polynomial;  
w
8, x� � xc r 4x3 r 6x r 3. 
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3. If we remove three edges from Ԑ, then we have  twenty isomorphic supersolvable 
4-graphs with no triangles and they have same bonds lattices as shown in the 
following figure: 

 
Figure (3.4) 

Each one of them has a chromatic polynomial;  
w
8, x� � xc r 3x3 r 3x r 1. 

Theorem (3.31): 
If a graph 8 � 
�, Ԑ�, has |�| � 4, then 8 is hypersolvable and either 8 is 

supersolvable with 
w
8, x� � xc r 
1 r \3 r \c�x3 r 
\3 r \c r \3\c�x r \3\c; 

or 8 is generic with 

w
8, x� � xc r f41j x
3 r f42j x r 3 � x

c r 4x3 r 6x r 3; 

where
\�, \3, \c� is an exponent vector for a fixed hypersolvable partition of 8.  
Proof: This is a direct result to our classification given in remark (3.30). □ 

 
(4) THE HYPERSOLVABLE GRAPHIC MATROIDS 

 
In this section we will study the hypersolvable (supersolvable) matroids associated 

to the hypersolvable (supersolvable) graph and we will defined the hypersolvable graphic 
matroid �9. 
 
Definition (4.1):[4], [6] and [18] 

A "finite" matroid is a pair � � 
�, Δ�, where � is a finite set and ∆ is a collection 
of subsets of �, satisfying the following axioms: 

1. ∆ is a non-empty (abstract) simplicial complex, i.e. ∆� ∅ and if ∆′ ∈ ∆ and 
∆" ⊂ ∆′, then ∆" ∈ ∆. 

2. Every induced subcomplex of ∆ is a pure, i.e. if ' ⊆ �, the maximal elements of 
∆ ∩ 2A have the same cardinality, where 2A � %!	 ⊆ �		|! ⊆ '&. 

The members of ∆ are called independent sets of the matroid, the facets is said to be 
the bases of the matroid and we write y ∈ � to mean y ∈ �. We call ∆ a 8-complex. Two 
matroids �� � 
��, Δ�� and �3 � 
�3, Δ3� are said to be isomorphic if there exists a 
bijection ¤ ∶ 	�� ⟶ �3 such that %y�, … , y*& ∈ Δ� if, and only if, %¤
y��, … , ¤
y*�& ∈ Δ3. 

A circuit ! ⊆ � is a minimal dependent set, i.e. ! is not independent but becomes 
independent when we remove any point from it. If ' ⊆ �, we define the rank of ' by;  

�+
'� � maxd|'�|t '� ⊆ '		and		'� ∈ ∆&. 
In particular, �+
§� � 0 and we will define the following: 

1. The rank of the matroid � itself by �+
�� � �+
�� � dim
∆� r 1 � |¨|, where 
¨ is a facet of �. The level of a matroid is ©
�� � |�| � �+
��-1.  
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2. A k-flat of � is a maximal subset of rank +. It has been noticed that, if ' and '′ 
are flats of a matroid �, then so is '⋂'′. We can defined the closure 'B of a subset ' ⊆ � to be the smallest flat containing ', i.e. 'B = ⋂ '′	ª«¬02	Aʹ⊇A . 

3. �(�) for a matroid � to be the poset of flats of �, ordered by inclusions. Since �(�) has a top element �, then �(�) is a lattice, which we call the lattice of flats 
of �. It has been noticed that, �(�) has a unique minimal element 0® = ∅. 

4. Define the characteristic polynomial w¯(x) of 	�, by; 

w¯(x) = ∑ °p0®, IqV∈±(¯) x,P,*(V); 
where ° denotes the M²³bius function of �(�) and  � = �+(�). 

5. Define the Crapoʹs beta invariant; ´(�) = (−1),*(¯)∑ (−1)|A|A⊆� �+('). 
Definition (4.2):[4], [6] and [7] 

A broken circuit of an ordered matroid �⊴, is a set !̅ = !\y, where ! is a circuit 
and y is the minimal element of ! via ⊴. The broken circuit complex (or BC-complex) 
which is defined by to be the simplicial complex; 

�'!⊴(�) = {' ⊆ �		|	'	contains	no	broken	circuit}. 
For 0 ≤ + ≤ �+(�), set; 

�'!⊴*(�) = {' ⊆ �		|	'	contains	no	broken	circuit	and	|'| = + + 1}; 
to be the kth- skeleton of �'!⊴(�). It has been noticed that, if »∆ = (»R∆, »�∆, … , »,P�∆ ) be 
the »-vector of �'!⊴(�), then  |�'!⊴*(�)| = »*∆ and by applying a result of Rota [15]; 

w¯(x) = »P�∆ x, − »R∆x,P� +⋯+ (−1),»,P�∆ ; 
where»P�∆ = 1. 

The family of all subsets of � {1}⁄  that contains no broken circuits is called the 
reduced broken circuit complex of �⊴ and denoted by�'!BBBBBB⊴(�). 
Definition (4.3): [20] 

Let � = {��, … , �J} be a central �-arrangement of hyperplanes over ℂ. Define a 
matroid �� = (�, ∆) on � by letting ∆ to be the collection of all independent 
subarrangements of �. It has been noticed that, �(�) ≡ �(��). Via a linear ordering ⊴, 
let: 

�'!⊴(��) = {' ⊆ �		|	'	contains	no	broken	circuit};  
be the  �'!-complex of ��. Then; 

w¯(x) = »P�∆ x, − »R∆x,P� +⋯+ (−1),»,P�∆ ; 
where � = �+(�) = ½ + 1 and »∆ = (»R∆, »�∆, … , »¾∆) be the »-vector of �'!⊴(��) and 
»P� = 1. Notice that, ℎ, = ,́*(¯¿)(A∆) = »,P�∆  is the type of the Cohen-Macaulay ring  
A∆ and it has a minimal free resolution; 

0 ⟶ �, ⟶�,P� ⟶⋯⟶�R ⟶ A∆ ⟶ 0; 
where for 0 ≤ + ≤ �, �+(�*) = *́(�∆) = |�'!⊴*(�)| = »*P�∆ .  

The matroid �� is said to be hypersolvable (supersolvable) matroid if, � is 
hypersolvable (supersolvable) arrangement. 

We concern with � is hypersolvable �-arrangement with Hp Π = (Π�, … , Πℓ) and \-
vector \ = (\�, … , \ℓ). Let �'!⊴(��) be the �'!-complex of the matroid �� via the 
hypersolvable ordering ⊴ with »-vector, »∆ = (»R∆, »�∆, … , »¾∆). That is, we shall give the 
no broken circuit subarrangements the degree lexicographic (DegLex) order with respect 
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the hypersolvable ordering. Where, by �'!⊴(��)|S = {C ∈ �'!⊴(��)|	C ⊆ ΠS} we 
denote the restriction of �'!⊴(��) to ΠS, for 1 ≤ ( ≤ ℓ. 

For 1 ≤ + ≤ ℓ, let CD*(�) = {C ⊆ �	|	C	is	a		+ − section	of	Π} and let CD(�)|* =d{�}t	� ∈ Π*} be the discrete 0-dimensional simplicial complex. Let CD(�) = CD(�)|� ∗⋯∗ CD(�)|ℓ be the multiple join of the complexes CD(�)|�, … , CD(�)|ℓ. That is CD(�) =
⋃ CD*(�)ℓ*-� . We call CD(�) a hypersolvable partition complex of the matroid �À via the 
hypersolvable ordering. It has been noticed that, in general CD(�) need not to be a 
subcomplex of the 8-complex ∆ of the matroid CD(�). The important point to know here 
�'!⊴(��)|* = CD(�)|* in general, for 1 ≤ + ≤ ℓ. But �'!⊴(��) ≠ CD(�) in general.  
Definition (4.4):[16] 

For any graph 8 = (�, Ԑ), by a graphic matroid �9 = (8, ∆9) on 8, we mean the 
matroid that isomorphic to ��� = (�9 , ∆��) on the graphic arrangement �9 by letting 
∆9≡ ∆��, i.e. via an ordering ⊴ on the edges of Ԑ, ∆9 will be the collection of all broken 
circuits and no broken circuits of 8. If 8 is hypersolvable (supersolvable) graph, we will 
call �9, a hypersolvable (supersolvable) graphic matroid on 8. It has been noticed that, �(���) is the bond lattice �(8) on 8. Via a linear ordering ⊴ on Ԑ, let: 

�'!⊴(�9) = {' ⊆ �9|	'	contains	no	broken	circuit};  
be the  �'!-complex of �9. Then; 

w9(x) = w¯�(x) = »P�∆�x, − »R∆�x,P� +⋯+ (−1),»,P�∆� ; 

where � = �+(�9) = |��| − 1 = ½ + 1 and »∆� = (»R∆� , »�∆� , … , »¾∆�) be the »-vector of 

�'!⊴(�9)  and »P� = 1. Notice that, ℎ, = ,́*(¯�)pA∆�q = »,P�∆�  is the type of the 
Cohen-Macaulay ring  A∆� and it has a minimal free resolution, 

0 ⟶ �, ⟶�,P� ⟶⋯⟶�R ⟶ A∆� ⟶ 0, 

where for 0 ≤ + ≤ �, �+(�*) = *́pA∆�q = |�'!⊴*(�)| = »*P�∆� .  
We will apply Al-Ta'ai's and Ali's basic results in [4] by the following 

theorems:  
Theorem (4.5):   

Let 8 = (�, Ԑ) be a hypersolvable graph with Hp Π = (Π; , ΠԐ), ℓ(8) = ℓ, Πʹ =(Π�, … , Πℓ) be the induced hypersolvable partition of its graphic arrangement �9 with 
exponent vector \ = (\�, … , \ℓ). Via a hypersolvable ordering ⊴ on 8 the following 
statements are equivalent: 

1. 8 is supersolvable. 
2. �'!⊴(�9) ≡ CD(�9), i.e.; �'!⊴p���q ≡ CD(�9)|� ∗⋅⋅⋅∗ CD(�9)|ℓ is factored 

completely and »*∆� = ∑ ∑ …∑ \Sh\Sl …\SoℓSo-So�hb�ℓP*b�Sl-Shb�ℓP*Sh-� , for 0 ≤ + ≤ ℓ −
1,where »∆� = (»R∆� , »�∆� , … , »ℓP�∆� ) be the »-vector of �'!⊴(�9) and w9(x) =w¯�(x) = »P�∆�xℓ − »R∆�xℓP� +⋯+ (−1)ℓ»ℓP�∆� ; where »P�∆� = 1. 

ℎ, = ,́*(¯�)pA∆�q = »ℓP�∆� = \3\c…\ℓ is the type of the Cohen-Macaulay ring  
A∆� and it has a minimal free resolution, 

0 ⟶ �ℓ ⟶�ℓP� ⟶⋯⟶�R ⟶ A∆� ⟶ 0, 

where for 0 ≤ + ≤ ℓ, �+(�*) = *́pA∆�q = |�'!⊴*(�)| = »*P�∆� . 
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3. �'!⊴(�9) is completely balanced. 
4. The 1st-skeleton  �'!⊴�(�9) is a complete ℓ-partite graph. 
5. The minimal broken circuits (under inclusion) are all of size two, i.e. every broken 

circuit of �9 contains 2-broken circuit. 

Proof: For(Â → Ä): Since 8 is supersolvable, Then �9 is supersolvable arrangement and 
by applying is partitioned into ℓ classes Π�, … , Πℓ such that theorem (3.26), �'!(�9) = C(�9)via a hypersolvable ordering ⊴ and for 1 ≤ + ≤ �+(8) = ℓ; s* = ∑ ∑ …∑ \Sh\Sl …\SoℓSo-So�hb�ℓP*b�Sl-Shb�ℓP*Sh-� ; 

forms the number of the +th –NBC bases of �9.That is, �'!(�9) induced an 
ordered subcomplex �'!⊴(�9) of ∆9 which is completely factored into CD(�9) =CD(�9)|� ∗⋅⋅⋅∗ CD(�9)|ℓ and for 0 ≤ + ≤ ℓ − 1 the number of +th –faces of 
�'!⊴(�9) is »*∆� = s*b� and our claim is down. 

For(Ä → Å): In fact �'!⊴p���q ≡ CD(�9)|� ∗⋅⋅⋅∗ CD(�9)|ℓ, implies that the vertex set 
of �'!⊴(�9), �9 every facet of �'!⊴(�9) has exactly one vertex in every class. 

For(Å → Æ): Since �'!⊴(�9) is cmpletely balanced, i.e. �9 is partitioned into ℓ classes Π�, … , Πℓ such that every facet of �'!⊴(�9) has exactly one vertex in every class. 
Therefore, every 1-faces of any facets has exactly one vertex in two different 
classes. That is the graph �'!⊴�(�9) can partitioned into ℓ classes Π�, … , Πℓ such 
that the vertices in every edge are from different classes. Then �'!⊴�(�9) is a 
complete ℓ-partite graph. 

For(Æ → Ç): If 1st-skeleton  �'!⊴�(�9) is a complete ℓ-partite graph, then the 0th-
skeleton �'!⊴R(�9) = �9 is partitioned into ℓ classes Π�, … , Πℓ such that every 1-
faces has exactly one vertex in two different classes. That is every facet (ℓ-NBC 
base) of �'!⊴(�9) has exactly one vertex in every class. Hence, every facets of ∆9 
which is not of �'!⊴(�9), (i.e. the ℓ-broken circuit of ∆9), has two vertices of ΠS 
forsome 2 ≤ ( ≤ ℓ. Therefore, the minimal broken circuits are all of size two. 

For(Ç → Â): Al-Tai’ and Ali in [4], proved that via a hypersolvable ordering on the 
hyperplanes of a superslvable arrangement every broken circuit contains broken 
circuit of rank two and in [5], Björner and Ziegler showed that if there exists an 
ordering such that every broken circuit contains broken circuit of rank two, (i.e. via 
this ordering The minimal broken circuits (under inclusion) are all of size two), then �(�9) is supersolvable geometric lattice. Thus, by applying theorem (3.8), 8 is 
supersolvable. □ 

Theorem (4.6):  
Let 8 = (�, Ԑ) be a hypersolvable graph with Hp Π = (Π; , Πℇ), ℓ(8) = ℓ, a 

hypersolvable ordering ⊴ on 8, \-vector \ = (d�, … , dℓ), »-vector of ∆9, » =
(»R, »�, … , »,*(9)P�) and »-vector of �'!⊴(�9), »∆� = (»R∆� , »�∆� , … , »,*(9)P�∆� ) such that 

�+(8) = � = |�| − 1 = Y − 1 < ℓ. Then: 
1. For 2 ≤ + ≤ �, �'!⊴*P�(�9) ≡ �'!⊴*P�p���q ⊆ CD*(�9) in general, i.e. 

»*P�∆� ≤ ∑ 	⋯	ℓP*b�Sh-� ∑ \Sh⋯ℓSo-So�hb� \So. 
2. �'!⊴�(�9) ≡ �'!⊴�p���q = CD3(�9) is a complete ℓ-partite graph, i.e.  

»�∆� = ∑ ∑ \Sh\SlℓSl-Shb�ℓP�Sh-� . 
3. There exists, 2 ≤ � = �(�9) ≤ |�| − 2 such that; 
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� = �(�9) = max{+	| CD*(�9) = �'!⊴*P�p���q ≡ �'!⊴*P�(�9)} 
and ��b�(�) represents the first level in the bonds lattice �(�9) that the induced 
partition Π′ from Π on �9, has dependent sections among (� + 2)-different blocks 
of Π′ via the induced hypersolvable ordering. That is, for 1 ≤ + ≤ �; 

»*P�∆� = ∑ 	⋯	ℓP*b�Sh-� ∑ \Sh⋯ℓSo-So�hb� \So. 
Proof: For 1: From theorem (2.5), since �9 be a hypersolvable arrangement , then for 

2 ≤ + ≤ �+(�9) = |�| − 1, every +-NBC base of �9 must be an +-section of Π.
 That is the number of all (+ − 1)ÈÉ faces of �9 can not exceed the number of +-
sections of Π and our aim is hold. 

For 2: By applying theorem ((1.4), [3]), �'!3(�9) = C3(�9). Therefore, �'!⊴�p���q =
CD3(�9) and  »�∆ = ∑ ∑ \Sh\SlℓSl-Shb�

ℓP�Sh-� . 
For 3: From theorem ((1.4), [3]), for 2 ≤ + ≤ �(�9), �'!*(�9) = C*(�9). That is, for 

1 ≤ + ≤ �; 
�'!⊴*P�p���q = CD*(�9); 

and »*P�∆ = ∑ 	⋯	ℓP*b�Sh-� ∑ \Sh⋯ℓSo-So�hb� \So. □ 
Proposition (4.7): 

Under the assumptions of theorem (4.6), For all x�, x3 ∈ ℂ ∖ {0}, Jambu’s and 
Papadima’s deformed arrangements �9Ê 0h and �9Ê 0l are �-equivalent and they have 

isomorphic matroids ���Ê Ëh
= (�9Ê 0h , ∆Ì0h) and ���Ê Ël

= (�9Ê 0l , ∆Ì0l). That is, they have 

isomorphic partition complexes, i.e. �'!⊴ f���Ê Ëh
j ≅ �'!⊴ f���Ê Ël

j via the 

hypersolvable ordering which give rise into isomorphic standard �-algebra A∆Ëh ≅ A∆Ël . 
Proof:  From theorem ((4.1.1), [1]), for x�, x� ∈ ℂ ∖ {0}, �9Ê 0h and �9Ê 0lare ℓ3-equivalent 

and by applying theorem ((1.3), [3]), they are �-equivalent they have isomorphic 
matroids, i.e. ���Ê Ëh

= (�9Ê 0h , ∆Ì0h) ≅ ���Ê Ël
= (�9Ê 0l , ∆Ì0l) and isomorphic partition 

complexes, i.e. �'!⊴ f���Ê Ëh
j ≅ �'!⊴ f���Ê Ël

j via equivalent hypersolvable orders 

which give rise into isomorphic standard �-algebras A∆Ëh ≅ A∆Ël . □ 

Theorem (4.8): 
Under the assumptions of theorem (4.6), we have �9 and �9Ê 0 are ��-equivalent, for 

all x ∈ ℂ ∖ {0}. Thus Jambu's-Papadima's deformation preserves the lattice intersection 
pattern up to codimension �, then it destroyed all the dependent sections of rank greater 
than � among the blocks of the induced partition Π′ from Π and replaced it by 
independent sections which add new faces of �'!⊴p���q ≡ �'!⊴(�9) to deform it into 
the partition complex CD�ÊÎ(�9Ê 0) as follows: 

i. For 0 ≤ ] ≤ �  and 1 ≤ + ≤ �, ∆^ and �'!⊴*P�p���q are invariant under the 

deformation, i.e. ∆9̂= ∆^0, »̂ = »̂0, �'!⊴*P�p���q ≅ CD Î* (�9Ê 0) and  »*P�∆� = »*P�∆0 , 

ii.  For � + 1 ≤ + ≤ �, Jambu’s-Papadima’s deformation replaced �'!⊴*P�(�9) ≡
�'!⊴*P�p���qby CD Î* (�9Ê 0) by adding exactly; 

{∑ 	⋯	ℓP*b�Sh-� ∑ \Sh⋯ℓSo-So�hb� \So} − »*P�∆� . (+ − 1)-faces. 
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iii.  For  � + 1 ≤ + ≤ ℓ, Jambu's-Papadima's deformation adding; ∑ 	⋯	ℓP*b�Sh-� ∑ \Sh⋯ℓSo-So�hb� \So, (+ − 1)-faces.. 
That is, the 8-complex and �'!-complex of �9 embedded in the 8-complex and 
partition complex of �9Ê 0 respectively. Thus, for  0 ≤ + ≤ � + 1, A∆�* ≅ A∆ÌÎ*  and for 

0 ≤ + ≤ �, �* ≅ �*0 . 
Proof: By applying theorem ((1.4), [3]), �9 and �9Ê 0 are ℓ�-equivalent, for all x ∈ ! ∖
{0}. That is Jambu’s-Papadima’s deformation method destroyed all the dependent 
sections among any (� + 2)-different blocks of Π′ and replaced it by independent 
sections which add new �'! bases of �/0. In fact, the one to one correspondence Ï ∶
�9 ⟶Ð �9Ê 0 which respects the lattice intersection pattern up to codimension two, Ï ∶
�3(�9) ⟶Ð �3(�9Ê 0), define a one to one correspondence Ï ∶ Π′ ⟶Ð Π′  0 with respect the 

same hypersolvable ordering of �9 and �9Ê 0, (i.e. Ï gives each one of �9 and �9Ê 0 the 
same \-vector). Therefore, 

Ï ∶ CD�(�9) ⟶Ð CD�ÊËp�9Ê 0q⋯⋯(4.8.1) 
form a one to one correspondence between the sets of all sections of Π′ and Π′  0, where it's 
restriction on  �'!⊴(���); ÏÑAÒ⊴(¯¿�) ∶ 	�'!⊴(���) ⟶Ð Ï(�'!⊴p���q) ↪ CD�ÊË(�9Ê 0); 
 define an injection between the broken circuits complexes. That is, the deformation start 
with embedding �'!⊴(���) as a subcomplex of  CD�ÊË(�9Ê 0)since all the no broken 
circuits of �9 are invariant under the deformation, then we can constructs the broken 
circuit complex CD�ÊË(�9Ê 0) of  �9Ê 0 by using the deformation method as follows: 
For (i): For 0 ≤ ] ≤ �  and 1 ≤ + ≤ �, the equivalent lattices pattern up to codimension � of  �9 and �9Ê 0 give rise into a bijection Ï(^) ∶ 	 ∆9̂⟶Ð ∆0̂ of (])ÈÉ-faces of the 8-

complexes and the restriction of Ï(^) on �'!⊴(*P�)p���q forms a bijection; 

ÏÑAÒ⊴(o�h)f¯¿�j
(*P�) ∶ 	�'!⊴(*P�)p���q ⟶Ð CD*(�9Ê 0); 

of  broken circuit complexes which keeps �'!⊴(*P�)p���q invariant under the 
deformation.  

For (ii): For � + 1 ≤ + ≤ �, those faces which are the minimal non-faces of  �'!⊴(��) 
of dimension (+ − 1) are deformed by jambu’s-Papadima’s deformation method, 
which added new (+ − 1)-faces by the restriction of (4.8.1) on CD�* (�9)\�'!⊴(*P�)p���q; ÏÔÕ�o (��)\ÑAÒ⊴(o�h)f¯¿�j

(*P�) :	CD�* (�9)\�'!⊴(*P�)p���q ⟶Ð Ï(*P�)(CD�* (�9)\
�'!⊴(*P�)p���q) ↪ CD�ÊË

* (�9Ê 0), 
i.e. we add exactly tCD�* (�9)t − |�'!⊴(*P�)p���q|,  (+ − 1)-faces. 

For (iii):  For � + 1 ≤ + ≤ ℓ, Jambu’s-Papadima’s deformation method added all those 
faces of dimension (+ − 1) by the isomorphism between the partition complexes, 
Ï(*P�) ∶ CD�* (�9) ⟶Ð CD�ÊË

* (�9Ê 0), where the number of such faces is equal to 

tCD�* (�9)t. 
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Finally, for each 0 5 + 5 �, �9 and �9Ê 0 have the same »*, »*∆� and �
∆, + r 1� which is 

produced that for 0 5 + 5 � r 1, A∆�* ≅ A∆ÌÎ*  and for 0 5 + 5 �, �* ≅ �*0  as free �-
modules. □ 
Corollary (4.9): 

Under the hypotheses of the theorem (4.6), If 8 is ℓ-generic, i.e. Y
8� � |�| � ℓ, 
then � � |�| � 2 and �'!⊴,P�
�9� ≡ �'!⊴,P�p���q has facets all ' ⊆ � with '⋂Π′� �
∅ and |'| � �, where »,P�∆� � |�| � 1. Jambu's-Papadima's deformation letting ∆*P�9 �
�'!⊴*P�
��� invariant for 1 5 + 5 � � 1 and added just one � � 1-face to deform 
�'!⊴,P�
�9� ≡ �'!⊴,P�p���q into CD Î, 
�9Ê 0�. That is, the deformation added just one ℓ-
face to deform �'!⊴p���q ≡ �'!⊴
�9� into the partition complex CD�ÊÎ
�9Ê 0�. 
Therefore, for 0 5 + 5 �, A∆* ≅ A∆ÌÎ*  and for 0 5 + 5 � � 1, �* ≅ �*0 , where there is a 

monomorphism �, ↪ �,0. 
Proof: This is an application of theorems (2.7), (3.29) and (4.8). □ 
Corollary (4.10): 

Suppose we have the assumption of theorem (4.6) with |�| � 4, then 8 is generic, 
� � 2. Jambu's-Papadima's deformation keeps ∆R9, �'!⊴R
�9�, ∆�9 and  �'!⊴�
�9� 
unchanged and deform �'!⊴3
�9� into CD Îc 
�9Ê 0�  by adding just one 2-face. Then, 
Jambu's-Papadima's deformation destroys the dependent 4-section of �9 and replaced it 
by one 4-face to obtain CD Î× 
�9Ê 0�, and; 

w
�9 , x� � x× r 4xc r 6x3 r 4x r 1; 
That is for 0 5 + 5 3, A∆* ≅ A∆ÌÎ*  and for 0 5 + 5 2, �* ≅ �*0 , where there is a 

monomorphism �c ↪ �c0. 
Proof: By applying theorem (3.31), if |�| � 4 then 8 is generic and by applying corollary 
(4.9), our aim is hold. □ 
Corollary (4.11): 

Under the assumption of theorem (4.6), the reduced homology group, 

� Ø
∆9� ≅ �Ù
Ú if	\ � �+
�9� � 1 � Y � 2
0 			if	\ � �+
�9� � 1 � Y � 2; 

where � � 
�1�,w
∆9� and �'!BBBBBB⊴p���q has top-dimensional reduced homology; 

� WPc f�'!BBBBBB⊴p���qj ≅ ÙÛf¯¿�j, where ́ 
�� � 
�1�,w f�'!BBBBBB⊴p���qj. 
Proof: By applying theorem ((7.7.2), [6]) and theorem ((7.8.2), [6]) since �+
�9� � Y �1. 
Example (4.12): 

Let 8 � 
�, Ԑ� be a graph such that � � %1,2,3,4,5& and 
Ԑ � %H1,2K, H1,5K, H2,5K, H2,3K, H3,4K, H4,5K&, as shown in the following figure: 

 
Figure (4.1) 
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 The graph 8 is a hypersolvable graph with 5-vertices and Hp Π = (Π�, Π3, Πc, Π×, ΠÜ) with \-vector, \ = (1,2,1,1,1). The graphic matroid �9 =(8, ∆9), is defined on 8 by letting ∆9= ⋃ ∆9oc*-R , where; 
∆9Ý= {1,2, … ,6}, 	∆9h= d{(, ]}	t	1 ≤ ( < ] ≤ 6}, 	∆9l= d{(, ], +}	t	1 ≤ ( < ] < +	 ≤ 6} ∖
{1,2,3}	and	∆9m= d{(, ], +, �}t1 ≤ ( < ] < + < � ≤ 6} ∖ {1,2,3,4}, {1,2,3,5}, {1,2,3,6}, {3,4,5,6}}. That is the f-vector of ∆ is » = (6,15,19,10). 
In fact 8 is not supersolvable, since ΠԐ has one singular block is ΠÜ. So �9 is not 
supersolvable arrangement and from theorem (4.5); 

�'!⊴(�9) ≢ CD(�9). 
By applying theorem (4.6), the broken circuit complex �'!⊴(�9) of 8, is defined as; 
�'!⊴(�9) = ⋃ �'!⊴*(�9)×*-R . That is the f-vector of  �'!⊴(�9) is »∆� =
(1,6,14,16,7). And w9(x) = w¯�(x) = x× + 6xc + 14x3 + 16x + 7. The type of the 

Cohen-Macaulay ring A∆� is ℎ× = ×́pA∆�q = »c∆� = 7 and it has a minimal free 
resolution; 

0 ⟶ �× ⟶�c ⟶�3 ⟶�� ⟶�R ⟶ A∆� ⟶ 0; 
is completely determined by the f-vector of  �'!⊴(�9), »∆� . 

By applying construction ((3.24), case (I.1)), the supersolvable Jambu's-Papadima's 
vertical deformation {�9ËÊ }0∈ℂ of �9 in ℂÜ × ℂ = ℂá is defined as; 

âp�9ËÊ q = (I� − I3)(I� − IÜ)(I3 − IÜ)(I3 − Ic)(Ic − I×)(I× − IÜ + Iáx); 
for each x ∈ ℂ and by the same hypersolvable ordering of �9 let; 

��0 = �{�(I� − I3), �30 = �{�(I� − IÜ), �c0 = �{�(I3 − IÜ),	 
�×0 = �{�(I3 − Ic), �Ü0 = �{�(Ic − I×)	and		�á0 = �{�(I× − IÜ + Iáx); 

where the Hp, ΠÈ = (Π�, Π3, Πc, Π×, ΠÜ) = (d��0e, d�30 , �c0e, d�×0}, {�Ü0}, {�á0e); 
have the same \-vector, \ = (1,2,1,1,1) which shows that the blocks Π�, Π3, Πc, Π× must 
be kept unchanged by the trivial lift and the block ΠÜ lifts to ℂá, by put ��� = (�� , ��x), 
where; 

�� = �0 if � ∈ Π�, Π3, Πc, Π×
1 if 									� ∈ ΠÜ												 ; 

i.e.  
���h = (1,−1,0,0,0,0), ���l = (1,0,0,0,−1,0), ���m = (0,1,0,0,−1,0), ���ã = (0,1, −1,0,0,0),
���ä = (0,0,1, −1,0,0)		and	���å = (0,0,0,1, −1,1). From theorem (4.8), � = 3. That is, 

�'!⊴R(���), �'!⊴�(���), �'!⊴3(���) unchanged under the deformation, i.e. »c∆� = »c∆Ë. 
Jambu's-Papadima's deformation replaced �'!⊴c(���) by CD Ë× (�9ËÊ ) and by adding 
exactly two 3-faces, {20 , 40 , 50 , 60} and {30 , 40 , 50 , 60}. Jambu's-Papadima's deformation 
destroys all the dependent 5-section of �9 and replaced it by two 4-faces, 
{10 , 20 , 40 , 50 , 60} and {10 , 30 , 40 , 50 , 60} to obtain CD ËÜ (�9ËÊ ) and we have �9 and �9ËÊ  are 

�c-equivalent. Thus, for 0 ≤ + ≤ 4, A∆�* ≅ A∆ÌÎ*  and for 0 ≤ + ≤ 3, �* ≅ �*0 .  
0 ⟶ �Ü0 ⟶�×0 ⟶�c0 ⟶�30 ⟶��0 ⟶�R0 ⟶ A∆ÌÎ ⟶ 0. 

Finally, the reduced broken circuit �'!BBBBBB⊴(�9) of �⊴ was computed by applying 
definition (4.2), that is »ÑAÒBBBBBB⊴(¯�)

∆� = (1,5,9,7,0). And figure (4.1) includes realization of 

�'!⊴(�9) and �'!BBBBBB⊴(�) complexes; 
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Figure (4.2) 
By a applying corollary (4.11), we have; 

� Ø(∆9) ≅ æℤ if	\ = 30 if	\ ≠ 3  and; 

� 3p�'!BBBBBBp���q; ℤq ≅ ℤ3; 
where, ́ (�) = (−1)×w(�'!BBBBBB⊴p���q) and  w f�'!BBBBBB⊴p���qj = 2. 
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 �	

��ً، و ا��� 
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