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Abstract. In this paper, we first introduce and discuss new classes of ideals in d —algebra like
M —Ideals and S —Ideals. Also, we introduce new classes of soft algebras they are called soft
S —algebras. Next, we use our new connotations to introduce and investigate new concepts in
soft S —algebras like soft M —Ideals and soft S — Ideals. In this work, we prove that every S —
Ideal is M —Ideal. Moreover, we show that it is not necessary every M —Ideal of 3 is S —
Ideal of 3 by a counterexample. Also, some properties of our connotations are given.
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1. INTRODUCTION

In 1999, D. Molodtsov [4] introduced the concept of soft set theory to solve complicated
problems in economics, engineering, and environment. He has formed the rudimentary
consequences of this connotation and successfully using the soft set theory into many aspects,
like theory of probability smoothness, Riemann integration and so on. Soft set theory has a
wider application and its progress is very rapid in different fields. In recently years, soft set
theory has been researched in many fields see ([1], [5], [14]-[18]). The connotation of d —
algebras launched by Neggers and Kimi [20], which is another functional popularization of
BCK — algebras. Moreover, they launched the connotations of d/d"/d”—ideals, and

d/d”/d* —subalgebras, in d —algebras, and explained the relations among them.

The connotation of p —algebra which may be considered as a generalization of the concept

of d —algebra and some connotations like p—subalgebra, p—ideal, p—ideal are given [6].
After that, most of them are discussed in different setting such as in fuzzy setting [7] and in
permutation setting [8]. An algorithm is given to link between soft setting and permutation
setting [9]. The connotations of (transitive) soft edge d/d"/d* —algebras, soft d/d"/d* -
algebras, soft d/d"/d* - ideals, and d /d”/d” —idealistics which are introduced by Young
et. al. [3]. Next, the connotations of soft edge p/BCL/BCH —algebras of the power sets which
are introduced by S. M. Khalil et. al. (see [10]-[12]). In 2017, the concept of o — algebraic soft
set is given [13].
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In this work, we give and discuss new classes of ideals in d —algebra like M —Ideals and
S —Ideals. Also, we introduced soft S —algebras as new classes of soft algebras. Next, we use
our new connotations to introduce and investigate new concepts in soft S —algebras like soft
M —Ideals and soft S —Ideals. In this work, we prove that every S —Ideal is M —Ideal.
Moreover, we show that it is not necessary every M —Ideal of Jis S—Ideal of 3 by a
counterexample. Some properties of these new connotations are given. The interesting field of
this work is to study new connotations of pure algebra in soft setting.

2. PRELIMINARIES
We will recall some basic background needed in our present work.

2.1 Definition: ([4])
Let 3 be an initial universe set and €2 be a set of parameters. We say that the pair (4,7)is a soft set

(S.S) over I if Aisamapping of 77 into P(3), where is the power set of T .

2.2 Definition: ([19])
Let (1,7) and (J,w) be two soft sets (S.S)s over J, then their union is (S.S), say (N, ®), where

wo=rUy andVeecw, X(e)=A()ifeer—w, d() ifeecy—x, A(e)US(e) ifeer Ny .
We write (1,7) LI (J,) =(N, ) . Further, for any two (S.S)s (4,7)and (5,y) over J their
intersection is the (S.S) (N, w) over J, and we write (N, ®) = (4,7) [1 (5,w),wherey 7\ @w=
L, Veew N(E)=1()No(e),and

2.3 Definition: ([2])
For any two (S.S)s (A4, 7)and (&,y) over the common universe 3, we say (A, 7) is a soft subset of

O,w)if rcw and Veer, A(e) & S(e) are identical approximations. We write (1, 7) <
(0,¥).

2.4 Definition: ([21])
Assume (3,Q) and (I',77) are soft classes and let zz: §— " and p: QQ — 77 be mappings. Then a

mapping ® :(3J,Q) _, (I',n) is defined as: fora (S.S) (4, 7)in(J3,Q), (O, 7),w), v = p(r)

cn isa(S.S)in (I',77) given by O(A,7)(B) = u[ U ﬂ(a)} for Ben. (O, x),y)is
acp(B)Nz
called a soft image of a (S.S) (4, 7). If w =n, then we shall write (®(4, 7),n) as O(4, 7).

2.5 Definition: ([19])

Assume (4, ) and (J,y) are two (S.S)s over a common universe 3. We say (4, 7) AND (0,y)is a

(S.S) denoted by (4, 7) I1 (5,y)and defined as (4,7) 1 (5,w)=(N, 7 xw), whereN(a, B) =
M) NS(B)forall(a, B) e mxy .
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2.6 Definition: ([19])

Assume (4, ) and (J,y) are two (S.S)s over a common universe 3. We say (4, 7) OR(0,y) isa
(S.S) denoted by (A4, 7) ﬁ (0,y) and defined as, (4, 7) ﬁ (0,w)=(N, 7 xy), where X(a, f) =
AMa)wo(p)forall(a,pf) e txy.

2.7 Definition: ([20])

Ad —algebra (D.A) is a non-empty set < with a constant 0 and a binary operation (A) with the
following axioms:

()pArp=0,

(i) OA p=0,

(iiy) prg=0and gA p=0 implythat p=q, V p,qingJ.

2.8 Definition: ([20])
Assume (3,4, 0) isa(D.A)and ¢ = | < 3. Wesay that | isa d —subalgebra (D.S.A) of (D.A) I

if pAgel whenever p,qel.

2.9 Definition: ([20])

Assume (3,4, 0) isa(D.A) and ¢ # | — 3. Wesay that | isad —ideal (D.l) of (D.A) J if
(1) pArgelandgel — pel,

(2 pelandgqe S—>pagel.

3. Soft S-Algebras
In this section, some new connotations are introduced and discussed like M —Ideal (M.I) S —Ideal

(S.1), soft S-algebras (S.S.A), soft M —Ideals (S.M.I) and soft S —Ideal (S.S.I). Also, some of their
properties are given.

3.1 Definition:
LetX be a subalgebra (S.A) of (D.A) (I,A,0) andnp < 3, we say 77 is (M.1) of 3 related toX and

denoted by 7 <, Nifitsuch that:
H0en,
(i) onh VieX-n&uven—{0}—>hrv=

3.2 Definition:
LetN bea (S.A) of (D.A) (3,4, 0) andp < I, we say that 77 is (S.1) of 3 related toX and denoted

by 1 < N if it such that:

Hg#nc XN,
(iVaieXven(hrv)en >hen,
(iii).=voAh VheN—{0}&ven—{0}—>hrv

3.3 Example:
Let (3,4,0) be (D.A) with the following table:
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A 0 0 14 | o

0 0 0 0 0 0

0 0 0 0 0 0

14 4 0 0 14 4

| | 0 1 0 )

o (o} 0 14 ) 0
(Table 1)

Also, letr ={0,6} =N ={0,], 6} = I= nand Jisa(S.A)of X={0,[,6}. Then 4,¢,], 6} {0,
is (M.I) of J relatedto X (77 <,, ).

3.4 Lemma:

Let (3,A,0)bea (D.A), N bea(S.A)of 3 and 7 < 3. Then <, H,if n <4 X.

Proof:

Suppose that 17 < N, then we consider that it such that:

Mg#nc N,

(iVieXven;(hnv)yen >hen,

(ili)Now, we want to prove that .=v A% AL VheN-{0}&ven—{0}—> 7

10en,

(2)Vh e N—n & v e n —{0} — From (i) we have there exists at least one member .oA#% hinv =

.ButthisvoAaven —>vAveN). Therefore, ifnn = N (since v eN). Also, ¢ = (since n7in v
contradiction, since v e N and N is sub-algebra of 3. That meansv Av €. In other words,
vAav=0en (since veI and I is d —algebra). Moreover, to prove (2) we assume that
heN—-n&ven—{0}, since0en, then we have 7 e X —{0}and from (iii) we consider that

hAnv=vARK.Hence n <, N.

3.5 Remark:
It is not necessary every (M.1) of Jis S — Ideal of I, we will explain that by the following example.

3.6 Example:

Assume (J,4,0)is a (D.A) in Example (3.3) and let 77 ={0, f}. Hence 77 is (M.I) of 3 related toN,
but is not (S.1) of 3 related toXN , where N =40, ],0}is a (S.A) of T in Example (3.3). Since there
exist hi=oceN,v=[enand (hrv)=[enbuthen.

3.7 Definition:
Let(3,A,0)bea (D.A)and (4, 7)bea(S.S)over J. Wesay (A, )is asoft S —algebra (S.S.A) over

JifVa, feA(p)—{0}>anf=Braec A(p),whenever pe .

3.8 Definition:
Let (A, 7)be a (S.S.A) over 3. Forany (S.S) say (0,w)overtJ, we say (9,y) isasoft M —ideal

(S.M.I) of (A, 7) and referred by (J,¥) <,, (4,7) ifitsuch that:
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Dy c 7,

(i) 6(p) < A(P), VP ey

3.9 Definition:
Let(A,7)be a (S.S.A) over 3. If (5,y) is(S.S) over T, then we say (5,y) isasoft S —ideal

(S.S.1) of (4, 7) and referred by (J,y) <5 (A, 7)if it such that:
Dy c 7,
(it) 6(p) <s A(p). VP ey.

3.10 Example:
Let(3,A,0) be (D.A) in Example (3.3) and let (A,7) and (O,w) be two (S.S)s over J where

A(p)={qe 3| prq {0, p}}, 7 ={0,[,6}, Then v ={0,0}.and O}, 5(p)={aeI|qap=
we consider that:

Dy cr,

(i) 0(0)={0} <5 I=1(0) &5(0)={0,06} < {0,06}=A(c). Hence (S,). (A, 7) <
Moreover, let (T,D) be a (S.S) over I, where T(p)={qe 3| prq=qap} and D={0,]}.
Then we consider that:

() Dcx,

(i) T(0) ={0} < I=2(0),but T(J) ={8,¢,],6%} is not (S.I) of 3 related to A(]) ={0,/,5}. Thus

(T, D) is not (S.S.1) of (1, 7). Also, since 0 T(]) ={6,¢[,06%}, we consider that (T, D) is not
(S.MLI) of (1, 7).

3.11 Remark:
Itis clearly every (S.S.1) is (S.M.1), but the converse is not true. Therefore a (S.M.1) need not be
(S.S.1) by the following example. Let (J,A,0) be (D.A) with the following table:

A 0 0 14 | o

0 0 0 0 0 0

0 0 0 14 ) o

14 ! 1 0 | o

j I J j 0 o

o} o o} o} o 0
(Table 2)

Define a multi-valued function A:7 — P(3)t by A(p)={qe3|qap €{0,0}}, Vper=3.
Then (A,7)is a (S.S.A) over J. Now, let (5,) be (S.S) overt 5, where w ={0,//,0} and
0y — P(3J) is defined by 5(p) ={q e 3| g p €{0,0}},Vp € w. Then we consider that:
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5(0) ={0,6} <y {08,053 = A(),
5(1) ={0, 03 <, {0.£,5} = (),

s(y={0,1} <, {0.[,63=A()).

o(o)={0,0}<,, 3I=A(0).
Hence (J,w) is (S.M.1) of (A, 7). However, (J,) isnot (S.S.I) of (A, 7), since
h=lello),v=0ced(oc) & (hnv)=0ced(o)but /¢ (o).

3.12 Theorem:
Let (4,7) bea(S.S.A)over 3. 1f (0,¥) <5 (4,7) and(5,) < (X, D), for any two (S.S)s over
3, then (0,p)[1(N,D) < (4, 7).

Proof:
Suppose that (T,L) = (5,w)II(N,D), then by the definition of the soft intersection we have

T(p)=5(p)N R(p),VpelL,where L=w(1D.Now, forany peL,wehaveT(p)=35(p)N
N(p)=5(p) (since (J,w)< (X,D)). However, for any pelL-—>pew and hence

o(p) <5 A(p) (since(S,y) < (A,7)). Therefore, for any pe L implies that T(p) <5 A(p).
Then (0,¥) 1N, D) < (4, 7).

3.13 Corollary:
Let (1,7) be a (SS.A) over 3. Then (0,w)[1(0,D) =< (L,w), if (O,w)=<s (A,7) or
(0,D) < (4,7), for any multi-valued function & : 3 — P(J)and for any two subsets y and D of

~

3.

Proof:
Suppose that(T,L) = (d,w)I1 (J,D), we have, where ¥V pelL o(p), T(p)=35(p)No(p)=

(since VpelL T(p)=0(p)=<s A(p). This implies that (J,y) <5 (4, 7). Now, if L=yw D
. ThenL = D) (since T(p) <s A(p)we have pelL, forany (J,) <s (4,7)Also, if. L)
=s (4, 4) (8,w)I1(s,D)

3.14 Theorem:
Let (A,7) be a (S.S.A) over 3. Then(d,w)LI(N,D) < (4, 7), ifand (4, 7) < (S,w)

are disjoint. Dand  in which Jover (N,D)and (J,y), for any two (S.S)s (N, D) < (4,7)

Proof:

Suppose that (3,y) <s (4, 7), (N,D) < (4,7)) and let (T, L), then for [I(5,D) (6,y) =
every pel by the definition of the soft union we have T(p)=45(p),if pew\D,
T(p)=N(p), if peD\y,and T(p)=5(p)UN(p), if pew D, where L=y UD. Now,
forany p € L impliesthat p ey or pe D (since  and D are disjoint). Therefore, forany p € L
we have T(p)=45(p) or M(p). However, 5(p) <5 A(P),Vp ey and R(p) <5 A(p),VpeD
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(since (S,w) L. Hence T(p) <5 A(p),VpeL). Then (N,D) <5 (4, 7)and (4,7) (S,y) <
(N,D) <5 (4, 7).

3.15 Theorem
Let (A, 7)beasoft S —algebraover 3. If (J,¥) <y, (4,7)and (5,1) S (N,w), for any two (S.S)s
over 3, then (N,l//)ﬁ(&, v) =<y (4,7).

Proof:
By the Definition (2.5), (X,y) I O,w)=(T,wxy), where T(a,B)= N(a) 5(B) for all

(o, B) e w xy . Since (3,) <, (4,7), thenTherefore, we consider .Vpew A(p), 5(p) =<y
that:

(1) 0ed(p),

(i) Vhe A(p)-9o(p) &ved(p)—{0} >hirnv=0Ah ,Vpey .Hence from (i) we have
0eo(b) and 0ed(a) = N() (since (5,y) < (N,w)). Therefore, 0e N(a)NS(B) =T («, B).
Furthermore, and implies that J(8). N N(a) < S@)No(B) d(a)=N(a) >

and hence from (ii) we have{o ()N S(B)} A(B)}— {A(@)NA(L)}-N(@)No(B) c{i(x)N
e{N()NSPB}—H{0} > 1 e UB)-(B) & Vi e{A(a) NAB}—{R(x) N6(B)} &b

&T(a,8) Vhe{l(&)NA(L)}— . This implies thatved(B)—-{0}>hArv=vAh
RS, w) <, (A7) . Thenvah veT(a, f)—{0t > hav=

3.16 Theorem: B
Let (4,7) be a (S.S.A) over J. Then(d,w)LI(N,D) <, (4,7), ifand (4,7) <,, (5,w)
.Jover (X,D)and (5,w), forany two (S.9)s (X, D) <,, (4,7)

Proof:

By the Definition (2.6), (X,D) I (6,w)=(T,L), where T(a,f)= N(@)Us(B) for all
(@,f)eL=Dxy. Since (0,y)=<y (4,7r) and), then (1,7) (N,D) <,,

. Therefore, we consider that: N(p) <,, A(p), Vp € D and 5(p) <, A(P),Vp ey

(1) 0e6(B).(i1)0 e X(a),

(iDVhe A(p)-o(p)&ved(p)—{0} > hrv=0Ah,

(i) Vhe A(a) -N(ax) &v eN(a) {0} > hinv=vAh ,VBecy &VaeD.

Now, for every p=(a,f)eL=Dxy we have T(p)=N(a)USs(B). That means
0eT(p),Vpel, and for any 7e{A(a)NAUB}-{R(2)US(B)}—he{A(a)NAB}
—N(a) < Ua) —N(«) or  he{a)NAUPL)}-6(B) < A(B)—5(B).Also, for any
02veT(p)=N@)U (L) > veN(a)—{0}orv e 5(B)—{0}. In other words, for any 7 e
Then {0} >hirnv=0vAh —T(a,p) VE and () NAB}-T(x, B)

for all T(a, ) <y =AU)NAB) <, A(B)andT (e, B) <y, = U)NA(L) <y A)

. (8, w)I(R, D) <,, (A, 7) . Hence(a, f) e L=Dxy
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The proof of the following Proposition is straight forward by Definitions (2.4), (3.7), (3.8) and (3.9), so
it is omitted.

3.17 Proposition:
(1) If ®:3 — T isasoft mapping and an isomorphism of d —algebras and (A4, 7) is a (S.S.A) over

3, then ®((4, 7)) isa (S.S.A) over T

(2) If ®:3 — T isasoft mapping and an isomorphism of d —algebras and (4, 7) is a (S.S.A) over
3 with (5,p) <,, (4,7),then O((3,y)) <,, O((4,7)) in T, forany (S.S) (5,w)over J.

(3) If ®:3 — T isasoft mapping and an isomorphism of d —algebras and (4, 7) is a (S.S.A) over
3 with (0,y) <5 (4,7), then O((S,¥)) <s O((4, 7)) in T, forany (S.S) (5,y)over 3.

Conclusion:

In this work, we introduced and studied new classes of ideals in d — algebra like (M.I) and (S.1).
Next, we used these connotations to introduce and investigate new concepts in (S.S.A) like
(S.M.1) and (S.S.1). In future work, we will initiate a study of S —algebras of power set and
explained their relations with other algebras of power set, like soft p—algebra of power set of

3, and soft edge p—algebra of power set of 3. Moreover, "we will investigate™ some new

"types" of soft ideal algebras of power sets and give a study on their characterizations using
d —ideal, BCK —ideal, and others.
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