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1. INTRODUCTION

The problem of state and parameter estimation of systems
of ordinary differential equations (ODEs) has been in the
focus of attention for many decades. Many frameworks
for addressing this problem have been developed to date,
including but not limited to shooting methods (Bock et al.,
2007), sensitivity functions (Banks et al., 2012), splines
(Zhan and Yeung, 2011) and adaptive observers (Bastin
and Gevers, 1988), (Marino, 1990), (Besançon, 2000),
(Farza et al., 2009), (Tyukin et al., 2013), (Tyukin, 2011)
(see also (Ljung, 1987), (Soderstrom and Stoica, 1988) for
system-identification take on the problem).

Notwithstanding significant progress in this area in both
theoretical and applied directions, there is a fundamen-
tal yet practical issue with this problem affecting further
progress. The issue is that in general it is difficult if not
impossible to express observed quantities as explicit known
functions of parameters and initial conditions or their
quadratures. Thus sequential numerical approximation of
solutions over time is typically involved in the estimation
process. The problem, however, is that this process is slow
and does not scale well with computational resources avail-
able. At the same time there are problems such as e.g. real-
time estimation of kinetic parameters of neural membranes
(Prinz et al., 2003) that do require fast estimation of model
parameters. Hence new approaches are needed.
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Here we provide a method enabling us to address the above
computational bottle-neck of the problem for a class of
systems with nonlinear parameterziation. The main idea
of the method is to present an observed quantity as an
integral that is explicitly a) computable and b) dependent
on the parameters entering the original ODE model non-
linearly. Doing so enables to benefit from computational
advantages of prefix sum algorithms (Blelloch, 1990) and
thus alleviating the issues of scalability and real-time. Our
preliminary work in this direction (Tyukin et al., 2016)
showed that employing the tools of adaptive observer
design (Marino, 1990) provides a feasible solution for a
relevant class of systems. In this work, employing observer
structure (Hammouri and de Morales, 1990), we extend
this idea to a significantly broader class of systems and
provide the required representations as well as sufficient
conditions for their existence.

The paper is organized as follows. In Section 2 we provide
formal statement of the problem, including the definition
of the considered class of systems and general technical
assumptions. This is followed by presentation of main
results in Section 3. In Section 4 we illustrate the method
with examples, and Section 5 concludes the work.

2. PROBLEM FORMULATION

2.1 System definition

Consider the following class of nonlinear systems
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ẋ = F (y, t)x+Ψ(y, t)θ + g(y, λ, t)
y(t) = CT

1 x; x(t0) = x0,
(1)

where x ∈ R
n and y ∈ R are the state and the output of

the system, respectively, F (y, t) ∈ R
n×n is a known matrix

dependent on y and t; λ ∈ Ωλ, Ωλ ⊂ R
p, θ ∈ Ωθ, Ωθ ⊂ R

m

are parameters, and C1 ∈ R
n: C1 = col(1, 0, · · · , 0). Other

technical assumptions are detailed in Assumption 1 below.

Assumption 1. The following properties hold for (1):

(1) the solution of (1) is defined for all t ≥ t0, and it is
T -periodic, T > 0;

(2) the function F is continuous, bounded, and F (y(·), ·)
is T -periodic;

(3) exact values of parameters λ and θ are unknown;
(4) the values of y(t) for t ∈ [t0, t0 + T ] are available and

known;
(5) the function Ψ : R×R → R

n×m is such that Ψ(y(·), ·)
is T -periodic and is in L∞[t0,∞) ∩ C0;

(6) the function g : R × R
p × R → R

n is such that
g(y(·), λ, ·) is T -periodic and is in L∞[t0,∞) ∩ C1 for
all λ ∈ Ωλ;

(7) the observability Gramian matrix

G(T, t0) =

� t0+T

t0

ΦA(s, t0)CCTΦT
A(s, t0)ds,

C ∈ R
n+m, C = col(1, 0, . . . , 0),

where ΦA(t, t0), is the normalized (i.e. ΦA(t0, t0) =
In+m) fundamental solution matrix of

ẋ = A(y(t), t)x,

A(y(t), t) =

�

F (y(t), t) Ψ(y(t), t)
0 0

�

,
(2)

is of full-rank, i.e rank(G(T, t0)) = n+m.

The class of equations (1) accommodates a broad set
of technical and natural systems ranging from models
of (Bastin and Dochain, 1990), dynamics of populations
(Jing and Chen, 1984), and neural membranes (Morris and
Lecar, 1981). In case the solutions are periodic it also may,
after suitable modifications (Tyukin et al., 2016), include
systems

ẋ = F (y, t)x+Ψ(y, t)θ + g(y, q, λ, t)

q̇ = υ(y, λ, t)q + ω(y, λ, t)

y = CT
1 x; x(t0) = x0, q(t0) = q0,

in which the functions υ(y(·), λ, ·), ω(y(·), λ, ·) are contin-
uous.

For notational convenience (cf. (Torres et al., 2012)), in
what follows, we will combine the state variable x and
parameters θ entering the right-hand-side of (1) linearly
into a single variable χ and rewrite the system accordingly:

χ̇ = A(y, t)χ+

�

g(y, λ, t)
0

�

y(t) = CTχ; χ(t0) = χ0.
(3)

In (3) χ = (x, θ) is the combined state vector, matrix
A(y, t) is defined as in (2), and C ∈ R

n+m is C =
col(1, 0, · · · , 0). Let us now proceed with the formal defi-
nition of the problem considered in this contribution.

2.2 Problem statement

Consider system (3), and suppose that the values of y(t)
for t ∈ [t0, t0 + T ] are known and available a-priori.

These values will depend on the parameters λ and initial
condition χ0 which themselves are assumed to be unknown.
The question is if there exists an operator F mapping y(·)
over [t0, t0+T ] into an efficiently computable quantity that
does depend on the parameters λ explicitly?

Formally we are seeking to find an F(λ, [y], t) such that

CTχ(t; t0, χ0, λ) = F(λ, [y], t)

F(t, λ, [y]) = π(t, λ, [y]) +

� t

t0

p(τ, λ, y(τ), [y])dτ

∀ t ∈ [t0, t0 + T ], λ ∈ Ωλ

(4)

in which the functionals π and p are known and com-
putable, e.g. in quadratures. The functionals π, p must
not depend on χ0 as a parameter, but nevertheless have
to ensure the required representation (4). When such a
representation is found one can employ numerous off-line
numerical optimization techniques to infer the values of λ,
θ, and initial conditions from the values of y in the interval
[t0, t0 +T ]. We will illustrate this step with an example in
Section 4 in which the Nelder-Mead algorithm (Nelder and
Mead, 1965) will be used for this purpose.

3. MAIN RESULT

The problem of existence of representations (4) in the
context of parameter estimation is hardly viable without
assessing parameter identifiability (Distefano and Cobelli,
1980) of (3). The corresponding sufficient conditions are
derived below.

3.1 Indistinguishable parametrizations of (3)

We begin with the following technical lemma.

Lemma 1. Consider the following class of system

χ̇ = A0(t)χ+ u(t) + d(t),
y = Cχ, χ(t0) = χ0, χ0 ∈ R

ℓ (5)

where

A0(t) =









α1(t) β2(t) β3(t) · · · βℓ(t)
α2(t)
... A∗

0(t)
αℓ(t)









and u, d, α : R → R
ℓ, β : R → R

ℓ−1 , u ∈
C1, d, α, β ∈ C, α = col(α1(t), α2(t), . . . , αℓ(t)), β =
(β2(t), β3(t), . . . , βℓ(t)).
and assume that solutions of (5) are globally bounded in
forward time.

Let, in addition:

1) u, u̇, d, α, β be bounded: max{�u(t)�, �u̇(t)�} ≤ B,
�d(t)� ≤ △ξ, �α(t)� ≤ M1, �β(t)� ≤ M2 for all t ≥ t0.

2) there exist a b : R → R
ℓ−1, b ∈ C, �b(t)� ≤ M3 such that

the zero solution of the system

ż = Λ(t)z, Λ(t) = A∗
0(t)− b(t)β(t),

is uniformly exponentially stable, and let ΦΛ(t, t0) be the
corresponding fundamental solution: ΦΛ(t0, t0) = Iℓ.

Then the following statements hold:
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1) If the solution of (5) is globally bounded for all t ≥ t0
then, for T sufficiently large, there are k1, k2 ∈ K :
�y(t)�∞,[t0,t0+T ] ≤ ǫ ⇒ ∃ t′(ǫ, x0) ≥ t0: �h(τ) +
u1(τ)�∞,[t′,t0+T ] ≤ k1(ǫ) + k2(△ξ),

where h(t) = β(t)z,

ż = Λ(t)z +Gu,
G =

(

−b(t) Iℓ−1

)

, z(t0) = 0,
(6)

2) If d(t) ≡ 0, then y(t) = 0 for all t ∈ [t0, t0 + T ] implies
existence of P ∈ R

ℓ−1:

β(t)ΦΛ(t, t0)P + h(t) + u1(t) = 0 (7)

for all t ∈ [t0, t0 + T ].

The proof of the lemma is proved in the Appendix.

According to Lemma 1 the set of parameters:

E(λ) ={λ′ ∈ R
p| ∃ p ∈ R

ℓ−1 : η(t, p, λ′, λ) = 0,

∀t ∈ [t0, t0 + T ]} (8)

where
η(t, p, λ′, λ) =

β(t)ΦΛ(t, t0)p+ g1(y(t), λ
′, t)− g1(y(t), λ, t)+

β(t)

∫ t

t0

ΦΛ(t, τ)G(τ)

(

g(y(τ), λ′, τ)− g(y(τ), λ, τ)
0

)

dτ,

and Λ is defined as in (6), contains parameters λ′ produc-
ing measurements y(t) = CTχ(t; t0, χ0, λ

′) that are indis-
tinguishable from CTχ(t; t0, χ0, λ) on the interval [t0, t0 +
T ]. If the set E(λ) contains more than one element then the
system (3) may not be uniquely identifiable on [t0, t0+T ].
Notwithsdanding existence and possible utility of systems
that are not uniquely identifiable, we will nevertheless
focus on systems (3) that are uniquely identifiable on
[t0, t0 + T ]. Thus we assume that the following holds:

Assumption 2. For every λ ∈ Ωλ, the set E(λ) consists of
just one element.

3.2 Auxiliary observer in the differential form

In addition to (3) consider the following auxiliary system:

˙̂χ=A(y(t), t)χ̂ +

(

g(y(t), λ′, t)
0

)

−R−1C(CT χ̂− y),

Ṙ=−δR−A(y(t), t)TR−RA(y(t), t) + CCT (9)

χ̂(t0) = χ̂0 ∈ R
n+m, R(t0) ∈ R

(n+m)×(n+m)

where χ̂ ∈ R
n+m is the observer’s state, R(t0) is a positive-

definite symmetric matrix, and δ ∈ R>0 is a positive
parameter. Solutions of (9) are defined for all t ≥ t0 (see
items (1), (2) in Assumption 1), and hence, (Hammouri
and de Morales, 1990), R(t) is given by

R(t) = e−δ(t−t0)ΦA(t0, t)
TR(t0)ΦA(t0, t)+

∫ t

t0

e−δ(t−s)ΦA(s, t)
TCCTΦA(s, t)ds

(10)

It is clear that R(t) is non-singular for all t ≥ t0,
symmetric, and positive-definite. Furthermore, if the value
of the parameter δ > 0 is chosen so that

�e−δ(t−t0)/2ΦA(t0, t)� ≤ De−a(t−t0), a > 0, (11)

then R(t) is bounded. In what follows the following addi-
tional assumption is instrumental:

Assumption 3. There exist t1 ≥ t0 and α(δ) > 0 such that

φ(t, δ) =

∫ t

t0

e−δ(t−s)ΦA(s, t)
TCCTΦA(s, t)ds ≥ α(δ)In+m

for all t ≥ t1.

The next theorem specifies asymptotic behaviour of
the observer system (9) (adapted from (Hammouri and
de Morales, 1990)).

Theorem 2. Consider (9) and suppose that δ > 0 be
chosen so that both (11) and Assumption 3 hold, and
λ′ = λ. Then there exists a t2 ≥ t0, such that:

�χ̂(t; χ̂0)− χ(t;χ0)� ≤ ke−δ(t−t0)

for all t ≥ t2, where k is a constant dependent on δ, t0, χ0

and the initial state χ̂0 of the observer system (9).

Theorem 2 states the variable χ̂(t) asymptotically tracks
χ(t), and that the difference between the two converges
to zero exponentially. Here, however, we are interested in
establishing finite-time relationships (4). To do so we need
another technical result establishing sufficient conditions
for the existence of unique periodic solutions of R. The
result is provided in Lemma 3.

Lemma 3. Consider (9) with A(y(t), t) being T -periodic.
Then, for sufficiently large δ > 0, there exists a unique
symmetric R(t0) ensuring that the function R(t) defined
by (10) is T -periodic. If, in addition, (11) and Assumption
3 hold then R(t0) is positive-definite.

Proof. Consider R(t+ T ) and its derivative wrt. t:

Ṙ(t+ T ) = −δR(t+ T )−A(y(t+ T ), t+ T )TR(t+ T )
−R(t+ T )A(y(t+ T ), t+ T ) + CCT

Since A(y(t+T ), t+T ) = A(y(t), t) for all t ≥ t0 , we have

Ṙ(t+ T ) = −δR(t+ T )−A(y(t), t)TR(t+ T )
−R(t+ T )A(y(t), t) + CCT (12)

Denoting E(t) = R(t + T ) − R(t) and invoking (12) we
obtain:

Ė = −δE −A(y(t), t)TE − EA(y(t), t). (13)

If R(t0) = R(t0 + T ) then E(t) = 0 is the unique
(n + m) zero matrix solution of (13). This implies that
R(t) = R(t+T ) for all t ≥ t0. Let us show that such R(t0)
exists.

For R(t0) = R(t0 + T ) to hold R(t0) must satisfy

R(t0) = e−δTΦA(t0, t0 + T )TR(t0)ΦA(t0, t0 + T ) + (14)
∫ t0+T

t0

e−δ(T+t0−s)ΦA(s, t0 + T )TCCTΦA(s, t0 + T )ds.

Let us rewrite (14) as:

R(t0)−H1R(t0)H2 = B (15)

where
H1 = e−δT/2ΦA(t0, t0 + T )T ,
H2 = e−δT/2ΦA(t0, t0 + T )

and

B =

∫ t0+T

t0

e−δ(T+t0−s)ΦA(s, t0+T )TCCTΦA(s, t0+T )ds.
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1) If the solution of (5) is globally bounded for all t ≥ t0
then, for T sufficiently large, there are k1, k2 ∈ K :
�y(t)�∞,[t0,t0+T ] ≤ ǫ ⇒ ∃ t′(ǫ, x0) ≥ t0: �h(τ) +
u1(τ)�∞,[t′,t0+T ] ≤ k1(ǫ) + k2(△ξ),

where h(t) = β(t)z,

ż = Λ(t)z +Gu,
G =

(

−b(t) Iℓ−1

)

, z(t0) = 0,
(6)

2) If d(t) ≡ 0, then y(t) = 0 for all t ∈ [t0, t0 + T ] implies
existence of P ∈ R

ℓ−1:

β(t)ΦΛ(t, t0)P + h(t) + u1(t) = 0 (7)

for all t ∈ [t0, t0 + T ].

The proof of the lemma is proved in the Appendix.

According to Lemma 1 the set of parameters:

E(λ) ={λ′ ∈ R
p| ∃ p ∈ R

ℓ−1 : η(t, p, λ′, λ) = 0,

∀t ∈ [t0, t0 + T ]} (8)

where
η(t, p, λ′, λ) =

β(t)ΦΛ(t, t0)p+ g1(y(t), λ
′, t)− g1(y(t), λ, t)+

β(t)

∫ t

t0

ΦΛ(t, τ)G(τ)

(

g(y(τ), λ′, τ)− g(y(τ), λ, τ)
0

)

dτ,

and Λ is defined as in (6), contains parameters λ′ produc-
ing measurements y(t) = CTχ(t; t0, χ0, λ

′) that are indis-
tinguishable from CTχ(t; t0, χ0, λ) on the interval [t0, t0 +
T ]. If the set E(λ) contains more than one element then the
system (3) may not be uniquely identifiable on [t0, t0+T ].
Notwithsdanding existence and possible utility of systems
that are not uniquely identifiable, we will nevertheless
focus on systems (3) that are uniquely identifiable on
[t0, t0 + T ]. Thus we assume that the following holds:

Assumption 2. For every λ ∈ Ωλ, the set E(λ) consists of
just one element.

3.2 Auxiliary observer in the differential form

In addition to (3) consider the following auxiliary system:

˙̂χ=A(y(t), t)χ̂ +

(

g(y(t), λ′, t)
0

)

−R−1C(CT χ̂− y),

Ṙ=−δR−A(y(t), t)TR−RA(y(t), t) + CCT (9)

χ̂(t0) = χ̂0 ∈ R
n+m, R(t0) ∈ R

(n+m)×(n+m)

where χ̂ ∈ R
n+m is the observer’s state, R(t0) is a positive-

definite symmetric matrix, and δ ∈ R>0 is a positive
parameter. Solutions of (9) are defined for all t ≥ t0 (see
items (1), (2) in Assumption 1), and hence, (Hammouri
and de Morales, 1990), R(t) is given by

R(t) = e−δ(t−t0)ΦA(t0, t)
TR(t0)ΦA(t0, t)+

∫ t

t0

e−δ(t−s)ΦA(s, t)
TCCTΦA(s, t)ds

(10)

It is clear that R(t) is non-singular for all t ≥ t0,
symmetric, and positive-definite. Furthermore, if the value
of the parameter δ > 0 is chosen so that

�e−δ(t−t0)/2ΦA(t0, t)� ≤ De−a(t−t0), a > 0, (11)

then R(t) is bounded. In what follows the following addi-
tional assumption is instrumental:

Assumption 3. There exist t1 ≥ t0 and α(δ) > 0 such that

φ(t, δ) =

∫ t

t0

e−δ(t−s)ΦA(s, t)
TCCTΦA(s, t)ds ≥ α(δ)In+m

for all t ≥ t1.

The next theorem specifies asymptotic behaviour of
the observer system (9) (adapted from (Hammouri and
de Morales, 1990)).

Theorem 2. Consider (9) and suppose that δ > 0 be
chosen so that both (11) and Assumption 3 hold, and
λ′ = λ. Then there exists a t2 ≥ t0, such that:

�χ̂(t; χ̂0)− χ(t;χ0)� ≤ ke−δ(t−t0)

for all t ≥ t2, where k is a constant dependent on δ, t0, χ0

and the initial state χ̂0 of the observer system (9).

Theorem 2 states the variable χ̂(t) asymptotically tracks
χ(t), and that the difference between the two converges
to zero exponentially. Here, however, we are interested in
establishing finite-time relationships (4). To do so we need
another technical result establishing sufficient conditions
for the existence of unique periodic solutions of R. The
result is provided in Lemma 3.

Lemma 3. Consider (9) with A(y(t), t) being T -periodic.
Then, for sufficiently large δ > 0, there exists a unique
symmetric R(t0) ensuring that the function R(t) defined
by (10) is T -periodic. If, in addition, (11) and Assumption
3 hold then R(t0) is positive-definite.

Proof. Consider R(t+ T ) and its derivative wrt. t:

Ṙ(t+ T ) = −δR(t+ T )−A(y(t+ T ), t+ T )TR(t+ T )
−R(t+ T )A(y(t+ T ), t+ T ) + CCT

Since A(y(t+T ), t+T ) = A(y(t), t) for all t ≥ t0 , we have

Ṙ(t+ T ) = −δR(t+ T )−A(y(t), t)TR(t+ T )
−R(t+ T )A(y(t), t) + CCT (12)

Denoting E(t) = R(t + T ) − R(t) and invoking (12) we
obtain:

Ė = −δE −A(y(t), t)TE − EA(y(t), t). (13)

If R(t0) = R(t0 + T ) then E(t) = 0 is the unique
(n + m) zero matrix solution of (13). This implies that
R(t) = R(t+T ) for all t ≥ t0. Let us show that such R(t0)
exists.

For R(t0) = R(t0 + T ) to hold R(t0) must satisfy

R(t0) = e−δTΦA(t0, t0 + T )TR(t0)ΦA(t0, t0 + T ) + (14)
∫ t0+T

t0

e−δ(T+t0−s)ΦA(s, t0 + T )TCCTΦA(s, t0 + T )ds.

Let us rewrite (14) as:

R(t0)−H1R(t0)H2 = B (15)

where
H1 = e−δT/2ΦA(t0, t0 + T )T ,
H2 = e−δT/2ΦA(t0, t0 + T )

and

B =

∫ t0+T

t0

e−δ(T+t0−s)ΦA(s, t0+T )TCCTΦA(s, t0+T )ds.
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The matricesH1,H2 are non-singular by construction, and
hence (15) is equivalent

H−1
1 R(t0)−R(t0)H2 = H−1

1 B. (16)

Moreover, H1 = HT
2 . The latter implies that if R(t0) is a

solution of (15) then so is R(t0)
T :

R(t0)
T = (H1R(t0)H2)

T + BT = HT
2 R(t0)

THT
1 +B

Further, (16) is the Sylvester equation; it has a unique
solution if the spectra of (n+m)× (n+m) matrices H−1

1

and H2 are disjoint (i.e. H−1
1 and H2 have no common

eigenvalues).

Note that

H−1
1 = eδT/2(ΦA(t0, t0 + T )T )−1,

and let α̃1, α̃2, . . . , α̃n+m and β̃1, β̃2, . . . , β̃n+m be the
eigenvalues of (ΦA(t0, t0 + T )T )−1 and ΦA(t0, t0 + T ),
respectively. The moduli of eigenvalues αi of H−1

1 and
eigenvalues βi of the matrix H2 are:

|αi| = eδT/2|α̃i|,
|βi| = e−δT/2|β̃i|

for all i = 1, 2, · · · , n+m. Denote

αmax = max
i

{|α̃i|}, αmin = min
i
{|α̃i|}

βmax = max
i

{|β̃i}, βmin = min
i
{|β̃i}

Given αmin �= 0 one can pick the value of δ so large that

eδT >
βmax

αmin
.

Doing so implies that

eδT/2αmin > e−δT/2βmax

This, in turn, results in

|αi| > |βj |, ∀ i, j = 1, . . . , n+m.

Hence

αi �= βj , ∀ i, j = 1, . . . , n+m,

and there is a symmetric matrix R(t0) satisfying (16) and,
consequently, (14).

Finally, let us show that if (11) and Assumption 3 hold
then the corresponding R(t0) is positive-definite. Let N
be a non-negative integer. Given that R(t0) = R(t0+NT )
we see that

R(t0) = e−δNTΦA(t0, t0 +NT )TR(t0)ΦA(t0, t0 +NT )

+φ(t0 +NT, δ). (17)

According to (11) the norm

�e−δNTΦA(t0, t0 +NT )TR(t0)ΦA(t0, t0 +NT )�
can be made arbitrarily small if N is large enough. At the
same time, Assumption 3 guarantees that φ(t0 +NT, δ) ≥
α(δ) in (17) for all N that are sufficiently large. Since
the value of N in (17) can be chosen arbitrary large we
conclude that R(t0) is positive-definite too. �.

3.3 Integral parametrization of periodic solutions of (3)

For notational convenience, let us rewrite auxiliary ob-
server equations (9) as:

˙̂χ= (A(t)−R−1CCT )χ̂+

(

g(y(t), λ′, t)
0

)

+R−1Cy(t)

Ṙ=−δR−A(y(t), t)TR−RA(y(t), t) + CCT

χ̂(t0) = χ̂0 ∈ R
n+m, R(t0) ∈ R

(n+m)×(n+m) (18)

and additionally consider dynamics of the linear part of
the first equation:

ξ =
(

A(y(t), t) −R−1(t)CCT
)

ξ. (19)

Let Φ(t, s) be the normalized fundamental solution matrix
of (19), i.e. Φ(t, t) = In+m and Φ(s, t) = Φ(t, s)−1.

Theorem 4. Consider system (18) and suppose that As-
sumptions 1 and 2 hold. In addition, suppose that condi-
tion (11) hold and the values of δ and the initial condition
R(t0) in (18) are chosen such that R(t) > 0 is T -periodic.

Consider the function ŷ : Rp × R → R:

ŷ(λ′, t) = CT
(

Φ(t, t0)χ̂0 +
∫ t

t0
Φ(t, τ)×

(

R−1(τ)Cy(τ) +

(

g(y(τ), λ′, τ)
0

))

dτ
) (20)

where

χ̂0 = (In+m − Φ(t0 + T, t0))
−1

∫ t0+T

t0
Φ(t0 + T, τ)×

(

R−1(τ)Cy(τ) +

(

g(y(τ), λ′, τ)
0

))

dτ.

(21)

Then

ŷ(λ′, t) = Cχ(t; t0, χ0, λ) ∀ t ∈ [t0, t0 + T ] ⇔ λ = λ′.

Proof. Sufficiency, i.e. implication ⇒. Assumption 1 im-
plies that Assumption 3 holds along the solution of (18).
This together with condition (11) assure that there are
positive constants ρ,D > 0 such that

�Φ(t, t0)� ≤ De−ρ(t−t0)

Hence the matrix In+m − Φ(t0 + T, t0) has no zero eigen-
values, and its inverse matrix, (In+m − Φ(t0 + T, t0))

−1,
exists. Thus ŷ(λ′, t) described by (20), (21) is defined for
all t ∈ [t0, t0 + T ]. Periodicity of R(t) implies that

χ̂(t; t0, χ̂0, λ
′) = Φ(t, t0)χ̂0 + (22)

∫ t

t0

Φ(t, τ)

(

R−1(τ)Cy(τ) +

(

g(y(τ), λ′, τ)
0

))

dτ

with χ̂0 defined by (21) is the unique asymptotically stable
periodic solution of the χ̂-subsystem in (18). On this
solution we have: CCT χ̂(t)−Cy(t) = 0 for all t ∈ [t0, t0 +
T ]. Thus

˙̂χ = A(y(t), t)χ̂ +

(

g(y(t), λ′, t)
0

)

, CT χ̂(t) = y(t).

Consider e = χ̂− χ:

ė = A(y(t), t)e +

(

g(y(t), λ′, t)
0

)

−
(

g(y(t), λ, t)
0

)

According to Lemma 1 and Assumption 2 the set of
indistinguishable parametrizations E(λ) of (3) comprises
of a single element, and hence λ′ = λ.

Necessity, ⇐. Let λ = λ′. According to assumptions of the
theorem dynamics of χ̂−χ satisfies (19). The zero solution
of the latter is globally asymptotically stable, and hence
limt→∞ χ̂(t) − χ(t) = 0. Noticing that (22) is the unique
exponentially stable periodic solution of the χ̂-subsystem
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in (18) we obtain that χ̂(t; t0, χ̂0, λ
′) = χ(t; t0, χ0, λ) for

all t ∈ [t0, t0+T ], and hence ŷ(λ′, t) = CTχ(t; t0, χ0, λ). �

4. EXAMPLE

Consider the following simple point model of neural mem-
brane activity (Morris and Lecar, 1981):

ẋ = gCam∞(x)(x − ECa) + gKq(x+ EK)
+gL(x+ EL) + I

q̇ = −1
τ(x)q +

ω∞(x)
τ(x)

y = x,

(23)

m∞(x) = 0.5
(

1 + tanh
(

x−V1

V2

))

ω∞(x) = 0.5
(

1 + tanh
(

x+V3

V4

))

τ(x) = T0

(

cosh
(

x+V3

2V4

))

.

Here x is the measured voltage, q is the recovery vari-
able. Parameters ECa, EK , EL are the Nernst potentials
of which the nominal values are assumed to be known:
ECa = 55.17, EK = −110.14, EL = 49.49; other param-
eters may vary from one cell to another and thus are
considered unknown.

Assume that the model operates in the oscillatory regime
which corresponds to periodic solutions of (23). For prac-
tically relevant values of T0, V3, V4 the integral

∫ t0+T

t0

− 1

τ(s)
ds < 0

where T is the period of oscillations. Given that x(·) is
T -periodic, the variable q can be expressed as:

q(t) = e

∫

t

t0
− 1

τ(x(s))
ds
q0 +

∫ t

t0

e

∫

t

z
− 1

τ(x(s))
dsω∞(x(z))

τ(x(z))
dz

q0 =

(

1− e

∫

t

t0
− 1

τ(x(s))
ds
)−1

×
∫ t0+T

t0

e

∫

t0+T

z
− 1

τ(x(s))
dsω∞(x(z))

τ(x(z))
dz.

Denoting g(t, λ, [y]) = gCam∞(x)(x − ECa) + gKq(x +
EK), Ψ(t, y) = (y(t), 1), and combining parameters as
θ = (gL, I), λ = (V1, V2, V3, V4, T0, gCa, gK) we can rewrite
(23) in the form of equation (3) with

A(y(t), t) =

(

0 y(t) 1
0 0 0
0 0 0

)

.

For this system and given nominal parameter values, the
period of oscillations is T = 15.1692, and hence for conve-
nience the integration interval is chosen as [0, 15.1692]. In
what follows, numerical evaluation of integrals and solu-
tions of all auxiliary differential equations was performed
on equi-spaced grids with the step size of 0.0002.

According to Theorem 4, explicit parameter-dependent
representation of the observed quantity, ŷ(λ, t), is defined
by (20), where C = (1, 0, 0), χ = col(x, θ), and the
fundamental solution (3×3)-matrices Φ(t, t0) and ΦA(t, t0)
are computed for the linear systems χ̇ = (A(y(t), t) −
R−1(t)CCT )χ, Ṙ = −δR − A(y(t), t)TR − RA(y(t), t) +
CCT , and χ̇ = A(y(t), t)χ, respectively, by the Improved
Euler method for t ∈ [0, 15.1692]. The value of δ was set as
δ = 2, and numerical approximations of matrices ΦA(t, t0)
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Fig. 1. The values of relative error e(t) = (ŷ(λ, t) −
y(t))/�y�∞,[t0,t0+∞] as a function of t.

were used to compute the matrices R(t) in accordance with
equation (10). The value of R(t0) in (10) was chosen to
be the unique solution of the Sylvester equation (16) (see
Lemma 3).

Figure 1 shows the relative error, e(t) = (ŷ(λ, t) −
y(t))/�y�∞,[t0,t0+∞], between the proposed numerical rep-
resentation (20) and simulated y(t) (Runge-Kutta, step
size 0.0002) for nominal parameter values.

The parameterized representations were later used, in
combination with the NelderMead algorithm (Nelder and
Mead, 1965) to recover the values of parameters λ and
θ. Results are provided in Table 1 and Figure 2 for
parameters.

Table 1. True (first row) and Estimated (sec-
ond row) of λ and θ, and the value of x0

Vector λ = (V1, V2, V3, V4, T0, gCa, gK)
V1 V2 V3 V4 T0 gCa gK
-1 15 -10 14.5 3 -1.1 -2

-0.9999 14.9999 -10 14.5 3 -1.1 -2

Vector θ = (gL, I) and x0

gL I x0

-0.5 10 21.96388

-0.49982 9.99345 21.96166

The process took less than 10 minutes on a standard PC
in Matlab R2015a.

Table 2. Time for 1000 evaluations of y

Eq. (20) Improved Euler method Ratio

2.21311 minutes 10.43818 minutes 4.71652

In order to assess potential computational advantage of the
proposed integral form of equation (24) we compared the
time required for 1000 evaluations of y(t) in Matlab a) ex-
pressed as in (20) and b) computed by the Improved Euler
method over the interval [t0, t0+T ]. The parameter values
for both cases were kept identical and did not change from
one trial to the other. The results are summarized in Table
2. This experiment shows that evaluation of the proposed
representation, (20), in Matlab on CPU is approximately
and on average 5 times faster than the Improved Euler
integration.
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in (18) we obtain that χ̂(t; t0, χ̂0, λ
′) = χ(t; t0, χ0, λ) for

all t ∈ [t0, t0+T ], and hence ŷ(λ′, t) = CTχ(t; t0, χ0, λ). �

4. EXAMPLE

Consider the following simple point model of neural mem-
brane activity (Morris and Lecar, 1981):

ẋ = gCam∞(x)(x − ECa) + gKq(x+ EK)
+gL(x+ EL) + I

q̇ = −1
τ(x)q +

ω∞(x)
τ(x)

y = x,

(23)

m∞(x) = 0.5
(

1 + tanh
(

x−V1

V2

))

ω∞(x) = 0.5
(

1 + tanh
(

x+V3

V4

))

τ(x) = T0

(

cosh
(

x+V3

2V4

))

.

Here x is the measured voltage, q is the recovery vari-
able. Parameters ECa, EK , EL are the Nernst potentials
of which the nominal values are assumed to be known:
ECa = 55.17, EK = −110.14, EL = 49.49; other param-
eters may vary from one cell to another and thus are
considered unknown.

Assume that the model operates in the oscillatory regime
which corresponds to periodic solutions of (23). For prac-
tically relevant values of T0, V3, V4 the integral

∫ t0+T

t0

− 1

τ(s)
ds < 0

where T is the period of oscillations. Given that x(·) is
T -periodic, the variable q can be expressed as:

q(t) = e

∫

t

t0
− 1

τ(x(s))
ds
q0 +

∫ t

t0

e

∫

t

z
− 1

τ(x(s))
dsω∞(x(z))

τ(x(z))
dz

q0 =

(

1− e

∫

t

t0
− 1

τ(x(s))
ds
)−1

×
∫ t0+T

t0

e

∫

t0+T

z
− 1

τ(x(s))
dsω∞(x(z))

τ(x(z))
dz.

Denoting g(t, λ, [y]) = gCam∞(x)(x − ECa) + gKq(x +
EK), Ψ(t, y) = (y(t), 1), and combining parameters as
θ = (gL, I), λ = (V1, V2, V3, V4, T0, gCa, gK) we can rewrite
(23) in the form of equation (3) with

A(y(t), t) =

(

0 y(t) 1
0 0 0
0 0 0

)

.

For this system and given nominal parameter values, the
period of oscillations is T = 15.1692, and hence for conve-
nience the integration interval is chosen as [0, 15.1692]. In
what follows, numerical evaluation of integrals and solu-
tions of all auxiliary differential equations was performed
on equi-spaced grids with the step size of 0.0002.

According to Theorem 4, explicit parameter-dependent
representation of the observed quantity, ŷ(λ, t), is defined
by (20), where C = (1, 0, 0), χ = col(x, θ), and the
fundamental solution (3×3)-matrices Φ(t, t0) and ΦA(t, t0)
are computed for the linear systems χ̇ = (A(y(t), t) −
R−1(t)CCT )χ, Ṙ = −δR − A(y(t), t)TR − RA(y(t), t) +
CCT , and χ̇ = A(y(t), t)χ, respectively, by the Improved
Euler method for t ∈ [0, 15.1692]. The value of δ was set as
δ = 2, and numerical approximations of matrices ΦA(t, t0)
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Fig. 1. The values of relative error e(t) = (ŷ(λ, t) −
y(t))/�y�∞,[t0,t0+∞] as a function of t.

were used to compute the matrices R(t) in accordance with
equation (10). The value of R(t0) in (10) was chosen to
be the unique solution of the Sylvester equation (16) (see
Lemma 3).

Figure 1 shows the relative error, e(t) = (ŷ(λ, t) −
y(t))/�y�∞,[t0,t0+∞], between the proposed numerical rep-
resentation (20) and simulated y(t) (Runge-Kutta, step
size 0.0002) for nominal parameter values.

The parameterized representations were later used, in
combination with the NelderMead algorithm (Nelder and
Mead, 1965) to recover the values of parameters λ and
θ. Results are provided in Table 1 and Figure 2 for
parameters.

Table 1. True (first row) and Estimated (sec-
ond row) of λ and θ, and the value of x0

Vector λ = (V1, V2, V3, V4, T0, gCa, gK)
V1 V2 V3 V4 T0 gCa gK
-1 15 -10 14.5 3 -1.1 -2

-0.9999 14.9999 -10 14.5 3 -1.1 -2

Vector θ = (gL, I) and x0

gL I x0

-0.5 10 21.96388

-0.49982 9.99345 21.96166

The process took less than 10 minutes on a standard PC
in Matlab R2015a.

Table 2. Time for 1000 evaluations of y

Eq. (20) Improved Euler method Ratio

2.21311 minutes 10.43818 minutes 4.71652

In order to assess potential computational advantage of the
proposed integral form of equation (24) we compared the
time required for 1000 evaluations of y(t) in Matlab a) ex-
pressed as in (20) and b) computed by the Improved Euler
method over the interval [t0, t0+T ]. The parameter values
for both cases were kept identical and did not change from
one trial to the other. The results are summarized in Table
2. This experiment shows that evaluation of the proposed
representation, (20), in Matlab on CPU is approximately
and on average 5 times faster than the Improved Euler
integration.
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5. CONCLUSION

The work presented a method for computationally efficient
and explicit parameter-dependent representation of peri-
odic solutions of systems of nonlinear ODEs. The method
is rooted in the ideas from adaptive observers theory and
is an extension of our earlier work (Tyukin et al., 2016) in
which linear part of the system was supposed to be time-
invariant. Here we extended this earlier result to systems
with time-varying linear parts. Similar extension can be
carried out for other observer structures, including e.g.
(Loria et al., 2009), followed by replacement of condition
(7) in Assumption 1 with the requirement of persistency
of excitation of corresponding terms.

The computational advantage of the method is due to
the possible parallel implementation of calculations that
the proposed representations offer. In addition to offering
scalability and making use of parallel computations, the
method offers reduction of dimensionality of the problem
due to incorporating linearly parameterized part of the
model into internal variables of the proposed representa-
tions. These internal variables are uniquely determined
by parameters entering the model nonlinearly and are
computed as a part of the representation.
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Besançon, G. (2000). Remarks on nonlinear adaptive
observer design. Systems & control letters, 41(4), 271–
280.

Blelloch, G.E. (1990). Prefix sums and their applications.
Technical Report CMU-CS-90-190. Carnegie Mellon
University.

Bock, H.G., Kostina, E., and Schlöder, J.P. (2007). Nu-
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APPENDIX

Lemma 5. Consider ẏ = k(t)y+u(t)+d(t), k, u, d : R≥t0 →
R, u ∈ C1, d ∈ C0, and let max{|u(t)|, |u̇(t)|} ≤ B, |d(t)| ≤
△ξ, |k(t)| ≤ ρ. Finally, let T, ǫ be a non-negative real
numbers such that T >

√
ǫ. Then

�y�∞,[t0,t0+T ] ≤ ǫ ⇒
�u�∞,[t0,t0+T ) ≤ 2

√
ǫ( eρ

√
ǫ +B) +△ξ, ∀ t ≤ t0 + T.

Proof. Let L be an arbitrary element of [0, T ]. Note that
for all t ≥ t0 + L the variable y(t) can be expressed as:

y(t) = y(t−L)e

∫

t

t−L
k(τ)dτ

+

∫ t

t−L

e

∫

t

τ
k(τ1)dτ1(u(τ)+d(τ))dτ.

According to the mean value theorem there is a τ ′ ∈ [t−
L, t]:

y(t)− y(t− L)e

∫

t

t−L
k(τ)dτ

= L e

∫

t

τ′
k(τ1)dτ1(u(τ ′) + d(τ ′))

⇒ y(t)e
−
∫

t

τ′
k(τ1)dτ1 − y(t− L)e

∫

τ
′

t−L
k(τ)dτ

= L (u(τ ′) + d(τ ′)) ⇒ |y(t)e−
∫

t

τ′
k(τ1)dτ1 |+

|y(t− L)e

∫

τ
′

t−L
k(τ)dτ | ≥ L |u(τ ′) + d(τ ′)|

Given that:

|e
∫

τ
′

t
k(τ1)dτ1 | ≤ |e

∫

τ
′

t
ρdτ1 | � eρ(τ

′−t)

⇒ |e−
∫

t

τ′
k(τ1)dτ1 | ≤ eρ(τ

′−t) ≤ eρL

⇒ |e
∫

τ
′

t−L
k(τ1)dτ1 | ≤ |e

∫

τ
′

t−L
ρdτ1 | � eρ(τ

′−(t−L))

≤ eρ(τ
′−(t−L)) ≤ eρL

and invoking the mean value theorem we conclude that
∃ τ ′′ ∈ [τ ′, t]:

|u(t)| = |u(τ) − u(τ) + u(t)|
= |u(τ ′) + u′(τ ′′)(t− τ ′)− d(τ ′) + d(τ ′)|
≤ |u(τ ′) + d(τ ′)|+BL+△ξ

⇒ |u(τ ′) + d(τ ′)| ≥ |u(t)| −BL−△ξ

Hence

|u(t)| ≤ BL+△ξ +
2 ǫ

L
eρL, ∀ t ≤ t0 + L

Given that L can be chosen arbitrary in the interval [0, T ],

we let L =
√
ǫ, and thus |u(t)|2 ǫ√

ǫ
eρ

√
ǫ+ ≤ BL + △ξ.

Finally, given that |u̇(t)| ≤ B| for all t ∈ [t0, t0 + T ]
including in the interval [t0, t0 +

√
ǫ], we conclude that

|u(t)| ≤ 2
√
ǫ( eρ

√
ǫ +B) +△ξ, ∀ t ≤ t0 + T.

Proof of Lemma 1

Let us rewrite the system as

ẏ = CT χ̇ = χ̇1

= α1(t)χ1 + β(t)χ̃+ u1(t) + d1(t)
(24)

˙̃χ = A∗
0(t)χ̃+ α̃(t)χ1 + b(t)u1(t)− b(t)u1(t)+

ũ(t) + d̃(t)

= A∗
0(t)χ̃+ α̃(t)y + b(t)u1(t) +G(t)u(t) + d̃(t)

(25)

where G(t) = (−b(t) Iℓ−1) , α̃(t) = col(α2(t), . . . , αℓ(t)),

β(t) = (β1(t), . . . , βℓ(t)), d̃(t) = col(d2(t), . . . , dℓ(t)) and

χ̃ = col(χ2, . . . , χℓ).
Let �y(t)�∞,[t0,t0+T ] ≤ ǫ and denote e(t) = β(t)χ̃+ u1(t).
According to Lemma 5, there are v1, v2 ∈ K such that
�e(t)� = �β(t)χ̃+u1(t)� ≤ v1(ǫ)+v2(△ξ) for all t ∈ [t0, t0+
T ].
Using the notation above one obtains:

˙̃χ = (A∗
0(t)− b(t)β(t))χ̃ + α̃(t)y +G(t)u(t)+

b(t)e(t) + d̃(t)

= Λ(t)χ̃+ α̃(t)y +G(t)u(t) + b(t)e(t) + d̃(t).

(26)

Therefore,

�u1(t) + h(t)� = �u1(t) + β(t)χ̃ − β(t)χ̃+ h(t)�
≤ �u1(t) + β(t)χ̃�+ �β(t)χ̃− h(t)�.

The solutions of (6) and (26) are:

z(t) = ΦΛ(t, t0)z0 +

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ

=

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ,

χ̃(t) = ΦΛ(t, t0)χ̃0 +

∫ t

t0

ΦΛ(t, τ)(α̃(τ)y(τ) +G(τ)u(τ)+

b(τ)e(τ) + d̃(τ))dτ.

Hence
∫ t

t0
ΦΛ(t, τ)G(τ)u(τ)dτ = χ̃(t)− ΦΛ(t, t0)χ̃0−
∫ t

t0
ΦΛ(t, τ)(α̃(τ)y(τ) + b(τ)e(τ) + d̃(τ))dτ

Since the system ż = Λ(t)z is uniformly exponentially
stable, there are D, k ∈ R>0 such that �Φ(t, t0)� ≤
De−k(t−t0).
Therefore,

�β(t)χ̃(t)− β(t)z(t)� = �β(t)ΦΛ(t, t0)χ̃0+

β(t)
∫ t

t0
ΦΛ(t, τ)(α̃(τ)y(τ) + b(τ)e(τ) + d̃(τ))dτ�

≤ M2De−k(t−t0)�χ̃0�+
DM2

k
(1 − e−k(t−t0))(M1ǫ+

M3(v1(ǫ) + v2(△ξ)) +△ξ)

Noticing that h(t) = β(t)
∫ t

t0
ΦΛ(t, τ)G(τ)u(τ)dτ , denot-

ing κ(ǫ) =
DM2

k
(M1ǫ + M3v1(ǫ)) + v1(ǫ), κ2(△ξ) =

DM2

k
(△ξ +M3v2(△ξ)) + v2(△ξ), and letting

t′(ǫ, χ0) = t0 +
1

k
ln

(

DM2�χ0�
ǫ

)

we conclude that there is a t′(ǫ, χ0) ≥ t0 such that

�u1(t) + h(t)�∞,[t,t0+T ] ≤ κ(ǫ) + ǫ+ κ2(△ξ)

� κ1(ǫ) + κ2(△ξ)

for all t ∈ [t′(ǫ, χ0), t0+T ] : T is sufficiently large to satisfy
t0 + T > t′(ǫ, χ0).

Finally, let d(t) ≡ 0. Then y ≡ 0 ⇒ ẏ ≡ 0, and hence (24)
implies that β(t)χ̃+ u1(t) ≡ 0. On the other hand,

e(t) =β(t)χ̃+ u1(t) = β(t)ΦΛ(t, t0)P+

β(t)

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ + u1(t)

=β(t)ΦΛ(t, t0)P + h(t) + u1(t).

Thus there is a P ∈ R
ℓ−1 such that (7) holds.
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Lemma 5. Consider ẏ = k(t)y+u(t)+d(t), k, u, d : R≥t0 →
R, u ∈ C1, d ∈ C0, and let max{|u(t)|, |u̇(t)|} ≤ B, |d(t)| ≤
△ξ, |k(t)| ≤ ρ. Finally, let T, ǫ be a non-negative real
numbers such that T >

√
ǫ. Then

�y�∞,[t0,t0+T ] ≤ ǫ ⇒
�u�∞,[t0,t0+T ) ≤ 2

√
ǫ( eρ

√
ǫ +B) +△ξ, ∀ t ≤ t0 + T.

Proof. Let L be an arbitrary element of [0, T ]. Note that
for all t ≥ t0 + L the variable y(t) can be expressed as:

y(t) = y(t−L)e

∫

t

t−L
k(τ)dτ

+

∫ t

t−L

e

∫

t

τ
k(τ1)dτ1(u(τ)+d(τ))dτ.

According to the mean value theorem there is a τ ′ ∈ [t−
L, t]:

y(t)− y(t− L)e

∫

t

t−L
k(τ)dτ

= L e

∫

t

τ′
k(τ1)dτ1(u(τ ′) + d(τ ′))

⇒ y(t)e
−
∫

t

τ′
k(τ1)dτ1 − y(t− L)e

∫

τ
′

t−L
k(τ)dτ

= L (u(τ ′) + d(τ ′)) ⇒ |y(t)e−
∫

t

τ′
k(τ1)dτ1 |+

|y(t− L)e

∫

τ
′

t−L
k(τ)dτ | ≥ L |u(τ ′) + d(τ ′)|

Given that:

|e
∫

τ
′

t
k(τ1)dτ1 | ≤ |e

∫

τ
′

t
ρdτ1 | � eρ(τ

′−t)

⇒ |e−
∫

t

τ′
k(τ1)dτ1 | ≤ eρ(τ

′−t) ≤ eρL

⇒ |e
∫

τ
′

t−L
k(τ1)dτ1 | ≤ |e

∫

τ
′

t−L
ρdτ1 | � eρ(τ

′−(t−L))

≤ eρ(τ
′−(t−L)) ≤ eρL

and invoking the mean value theorem we conclude that
∃ τ ′′ ∈ [τ ′, t]:

|u(t)| = |u(τ) − u(τ) + u(t)|
= |u(τ ′) + u′(τ ′′)(t− τ ′)− d(τ ′) + d(τ ′)|
≤ |u(τ ′) + d(τ ′)|+BL+△ξ

⇒ |u(τ ′) + d(τ ′)| ≥ |u(t)| −BL−△ξ

Hence

|u(t)| ≤ BL+△ξ +
2 ǫ

L
eρL, ∀ t ≤ t0 + L

Given that L can be chosen arbitrary in the interval [0, T ],

we let L =
√
ǫ, and thus |u(t)|2 ǫ√

ǫ
eρ

√
ǫ+ ≤ BL + △ξ.

Finally, given that |u̇(t)| ≤ B| for all t ∈ [t0, t0 + T ]
including in the interval [t0, t0 +

√
ǫ], we conclude that

|u(t)| ≤ 2
√
ǫ( eρ

√
ǫ +B) +△ξ, ∀ t ≤ t0 + T.

Proof of Lemma 1

Let us rewrite the system as

ẏ = CT χ̇ = χ̇1

= α1(t)χ1 + β(t)χ̃+ u1(t) + d1(t)
(24)

˙̃χ = A∗
0(t)χ̃+ α̃(t)χ1 + b(t)u1(t)− b(t)u1(t)+

ũ(t) + d̃(t)

= A∗
0(t)χ̃+ α̃(t)y + b(t)u1(t) +G(t)u(t) + d̃(t)

(25)

where G(t) = (−b(t) Iℓ−1) , α̃(t) = col(α2(t), . . . , αℓ(t)),

β(t) = (β1(t), . . . , βℓ(t)), d̃(t) = col(d2(t), . . . , dℓ(t)) and

χ̃ = col(χ2, . . . , χℓ).
Let �y(t)�∞,[t0,t0+T ] ≤ ǫ and denote e(t) = β(t)χ̃+ u1(t).
According to Lemma 5, there are v1, v2 ∈ K such that
�e(t)� = �β(t)χ̃+u1(t)� ≤ v1(ǫ)+v2(△ξ) for all t ∈ [t0, t0+
T ].
Using the notation above one obtains:

˙̃χ = (A∗
0(t)− b(t)β(t))χ̃ + α̃(t)y +G(t)u(t)+

b(t)e(t) + d̃(t)

= Λ(t)χ̃+ α̃(t)y +G(t)u(t) + b(t)e(t) + d̃(t).

(26)

Therefore,

�u1(t) + h(t)� = �u1(t) + β(t)χ̃ − β(t)χ̃+ h(t)�
≤ �u1(t) + β(t)χ̃�+ �β(t)χ̃− h(t)�.

The solutions of (6) and (26) are:

z(t) = ΦΛ(t, t0)z0 +

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ

=

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ,

χ̃(t) = ΦΛ(t, t0)χ̃0 +

∫ t

t0

ΦΛ(t, τ)(α̃(τ)y(τ) +G(τ)u(τ)+

b(τ)e(τ) + d̃(τ))dτ.

Hence
∫ t

t0
ΦΛ(t, τ)G(τ)u(τ)dτ = χ̃(t)− ΦΛ(t, t0)χ̃0−
∫ t

t0
ΦΛ(t, τ)(α̃(τ)y(τ) + b(τ)e(τ) + d̃(τ))dτ

Since the system ż = Λ(t)z is uniformly exponentially
stable, there are D, k ∈ R>0 such that �Φ(t, t0)� ≤
De−k(t−t0).
Therefore,

�β(t)χ̃(t)− β(t)z(t)� = �β(t)ΦΛ(t, t0)χ̃0+

β(t)
∫ t

t0
ΦΛ(t, τ)(α̃(τ)y(τ) + b(τ)e(τ) + d̃(τ))dτ�

≤ M2De−k(t−t0)�χ̃0�+
DM2

k
(1 − e−k(t−t0))(M1ǫ+

M3(v1(ǫ) + v2(△ξ)) +△ξ)

Noticing that h(t) = β(t)
∫ t

t0
ΦΛ(t, τ)G(τ)u(τ)dτ , denot-

ing κ(ǫ) =
DM2

k
(M1ǫ + M3v1(ǫ)) + v1(ǫ), κ2(△ξ) =

DM2

k
(△ξ +M3v2(△ξ)) + v2(△ξ), and letting

t′(ǫ, χ0) = t0 +
1

k
ln

(

DM2�χ0�
ǫ

)

we conclude that there is a t′(ǫ, χ0) ≥ t0 such that

�u1(t) + h(t)�∞,[t,t0+T ] ≤ κ(ǫ) + ǫ+ κ2(△ξ)

� κ1(ǫ) + κ2(△ξ)

for all t ∈ [t′(ǫ, χ0), t0+T ] : T is sufficiently large to satisfy
t0 + T > t′(ǫ, χ0).

Finally, let d(t) ≡ 0. Then y ≡ 0 ⇒ ẏ ≡ 0, and hence (24)
implies that β(t)χ̃+ u1(t) ≡ 0. On the other hand,

e(t) =β(t)χ̃+ u1(t) = β(t)ΦΛ(t, t0)P+

β(t)

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ + u1(t)

=β(t)ΦΛ(t, t0)P + h(t) + u1(t).

Thus there is a P ∈ R
ℓ−1 such that (7) holds.
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