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Abstract. We propose a novel method for fast and scalable evaluation of periodic solutions
of systems of ordinary differential equations for a given set of parameter values and initial
conditions. The equations governing the system dynamics are supposed to be of a special
class, albeit admitting nonlinear parametrization and nonlinearities. The method enables to
represent a given periodic solution as sums of computable integrals and functions that are
explicitly dependent on parameters of interest and initial conditions. This allows invoking
parallel computational streams in order to increase speed of calculations. Performance and
practical implications of the method are illustrated with examples including classical predator-
prey system and models of neuronal cells.
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Notation

• Symbol ‖ · ‖ stands for the Euclidian norm.
• Symbol R denotes the field of real numbers, and R≥0 = {x ∈ R | x ≥ 0}.
• Symbols In, 0n are the identity and zero n× n matrices, respectively.
• By K we denote the set of all strictly increasing continuous functions κ : R≥0 → R≥0 such that

κ(0) = 0.
• Consider a non-autonomous system ẋ = f(x, p, t, u(t)), where f : Rn ×R

d ×R×R
l → R

n, u : R → R
l

are continuous, p ∈ R
d is the vector of parameters, and f(·, p, t, u) is locally Lipschitz; x(· ; t0, x0, p, [u])

stands for the unique maximal solution of the initial value problem: x(t0; t0, x0, p, [u]) = x0. In cases
when no confusion arises, we will refer to these solutions as x(·; t0, x0, [u]), x(·;x0, [u]), or simply
x(·). Solutions of the initial value problem above at t are denoted as x(t; t0, x0, p, [u]), x(t; t0, x0, [u]),
x(t;x0, [u]), or x(t) respectively.

• Let f : R → R
n, then ‖f(τ)‖∞,[t0,t0+T ] denotes the uniform norm of f(·) on [t0, t0 + T ]:

‖f(τ)‖∞,[t0,t0+T ] = ess sup{‖f(t)‖, t ∈ [t0, t0 + T ]}.
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1. Introduction

Evolutionary development and change is a wide-spread phenomenon that is inherent to biological systems.
It can be viewed as a change of hereditary characteristics of an organism over successive generations. In
mathematical biology hereditary characteristics may be imagined, in loose terms, as a model variable
determining dynamics of populations that changes over time. Alternations of individual traits often
occur at a microscopic level; the effects, however, can be felt at the level of single organisms, their groups
as well as their populations. Sometimes these effects will result in a gradual change of fitness in a near
future, but on a longer time scale and near crises evolutionary changes may lead to significant reduction
of population and even extinction. The question is therefore if it is possible to infer minute evolutionary
changes fast enough to predict potential catastrophes in future?

In mathematical modelling terms evolutionary alternations could be reflected in parameter changes of
equations determining dynamics of species, organisms or populations. A simple example could be the
changes of predation or reproduction rates in predator-prey models with saturation [4], [18] (cf [3])

ẋ = p1x

(

1− x

p2

)

− p3zx

p4 + x

ż =
p5zx

p4 + x
− p6z,

(1.1)

where x, z are population densities of prey and predator, respectively, and p = (p1, . . . , p6) are param-
eters that are subjected to evolutionary modifications. Models of this type are known to exhibit broad
range of qualitatively different dynamics, depending on parameters [18], including stable limit cycles
and relaxations to equilibria. Hence the question of monitoring and predicting potential consequences of
minor evolutionary changes in relevant systems can be posed as a problem of fast parameter and state
estimation of (1.1) from available measurement data. The data, in turn, may be restricted to few samples
of either x(t) or z(t).

In a more generalized framework we will assume that processes of interest can be described by systems
of nonlinear ordinary differential equations

ẋ = f(x, p, t), x(t0) = x0, (1.2)

where f : Rn × R
k × R → R

n is continuous and locally Lipschitz wrt the variable x function, and p is
the vector of unknown parameters. Let [t0, t0 + T ] be an interval on which the solution x(·; t0, x0, p) of
(1.2) is defined. Let us further suppose that the system’s state, x(t; t0, x0, p), is not accessible for direct
observation at any t ∈ [t0, t0 + T ]. We will, however, assume that the values

h(t, x(t; t0, x0, p)), h : R× R
n → R

are available for every t ∈ [t0, t0 + T ]. The problem is now how to find p′ ∈ R
k, x′

0 ∈ R
n such that

h(t, x(t; t0, x0, p)) = h(t, x(t; t0, x
′
0, p

′)) for all t ∈ [t0, t0 + T ]. (1.3)

This is a standard inverse problem, and many methods for finding solutions to this problem have been
developed to date (sensitivity functions [20], splines [6], interval analysis [15], adaptive observers [19],[5],
[9], [12],[24],[25], [8] and particle filters and Bayesian inference methods [1]). Despite these methods are
based on different mathematical frameworks, they share a common feature: one is generally required
to repeatedly find numerical solutions of nonlinear ordinary differential equations (ODEs) over given
intervals of time (solve the direct problem).

In particular, if the right-hand side of (1.2) is differentiable with respect to x and p then in the
framework of sensitivity functions at each query point p̂, x̂0 one needs to solve the following initial value
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problem:

ẋ = f(t, x, p̂)

δ̇p =
∂f

∂x
[t, x(t; t0, x̂0, p̂), p̂]δp +

∂f

∂p
[t, x(t; t0, x̂0, p̂), p̂]

δ̇0 =
∂f

∂x
[t, x(t; t0, x̂0, p̂), p̂]δ0

x(t0) = x̂0, δp(t0) = 0n, δ0(t0) = In,

(1.4)

where δp(t) is the n× k matrix of partial derivatives of solution x(t; t0, x̂0, p̂) with respect to p̂, and δ0(t)
is the n× n matrix of partial derivatives of x(t; t0, x̂0, p̂) with respect to x̂0.

Notwithstanding the plausibility of numerical integration of (1.4) or (1.2) in algorithms for state and
parameter estimation, this operation is an inherently sequential process. The amount of time needed for
direct numerical integration of these systems over a grid of N points is at least O(N). This constrains
computational scalability of the problem, and as a result it imposes limitations on the time required to
derive a solution.

In order to overcome this limitation we propose to cast the inverse problem above in an alternative,
integral form in which the model output is defined as a combination of indefinite integrals with known,
explicit and computable kernels, possibly dependent on x0, p, and explicit functions of x0, p. The advan-
tage of such integral formulations is that their computations are scalable and can be performed using
conventional prefix sum algorithms of which the execution time is of order O(loga(N)), a = 2, 3 . . . . The
latter option compares favorably with O(N).

Hence, instead of finding numerical solutions of the initial value problem (1.2) and matching the results
to observed data, e.g. as (1.3), we will search for a representation of the problem as

y(t)− F (p, x0, t) = 0, for all t ∈ [t0, t0 + T ],

F (p, x0, t) = R(p, x0) +

∫ t

t0

g(t, τ, p, x0)dτ,
(1.5)

where R : Rk × R
n → R

n, g : R × R × R
k × R

n → R
d and y : R → R

d are functions that are explicitly
computable from measurement data. We additionally require that if p′, x′

0 is a solution of (1.5) then it
is also a solution of (1.3) and vise versa. Finally, if the values of h(t, x(t; t0, x0, p)) are available only
at a finite set of points {ti}, ti ∈ [t0, t0 + T ] we will assume that they are informative enough so that
the functions R, g can be reconstructed or approximated with acceptable accuracy, and corresponding
representations F (p, x0, ti) in (1.5) can still be computed with sufficient precision.

In the next sections we specify a class of systems for which such representation is possible. This class
of systems is not as general as (1.2) but is relevant enough in modelling applications. In Section 2 we
define this class of systems and present general technical assumptions. This is followed by presentation
of main results in Section 3. The results are based on the periodicity assumption we impose on the
data and also on known facts from the theory of adaptive observes [19], [17]. In Section 4 we illustrate
the approach with two examples as well as provide an assessment of scalability of the approach in the
problems considered.

2. Problem Formulation

Consider the following class of systems

ẋ = A(θ)x+ Ψ(y, t)θ + v(y, q, λ, t)

q̇ = P (y, λ, t)q + w(y, λ, t)

y = CTx, x(t0) = x0, q(t0) = q0,

(2.1)
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where (x, q), x ∈ R
n, q ∈ R

d is the state vector, θ ∈ R
m, λ ∈ R

p are parameters, A(θ) is an n × n real
matrix, possibly dependent on θ, and C ∈ R

n, C = col (1, 0, . . . , 0). We assume that the following hold
for (2.1):

Assumption 2.1. (General assumptions on (2.1))

A1) the solution of (2.1) is defined on the interval [t0, t0 + T ] (for some T > 0, possibly dependent on t0);
A2) the pair A(θ), CT , is observable, that is

rank











CT

CTA(θ)
...

CTAn−1(θ)











= n;

A3) P (y, λ, t) and Ψ(y, t) are d × d and n × m real matrices of which the entries are continuous and
differentiable functions; P (y, λ, t) is diagonal:

P (y, λ, t) = diag (α1(y, λ, t), . . . , αd(y, λ, t)) ;

A4) v : R× R
d × R

p × R → R
n, w : R× R

p × R → R
d are continuous and differentiable functions.

A5) Exact values of parameters θ, λ are unknown.

Since the pair A(θ), CT is observable there always is a coordinate transform, possibly dependent on
t, θ, [19] rendering (2.1) into the following form

ẋ = A0x+ bϕ(y, t)T θ̃(θ) + ṽ(y, q, λ̄(λ, θ), t)

q̇ = P̃ (y, λ̄, t)q + w̃(y, λ̄, t)

y = CTx, x(t0) = x0, q(t0) = q0,

(2.2)

b = (1, b1, . . . , bn−1)
T is such that the polynomial sn−1 + b1s

n−2 + · · · + bn−1 is Hurwitz, and A0 =
(

0 In−1

0 0

)

. Functions ϕ : R×R → R
r, ṽ : R×R

k×R → R
n, w̃ : R×R

k×R → R
d, P̃ : R×R

k×R → R
d×d

are continuous and differentiable, P̃ is diagonal, and θ̃ ∈ R
r, λ̄ ∈ R

k are parameters.
Furthermore, noticing that the variable y is defined and known for all t ∈ [t0, t0 + T ], and y(·) is

continuous one can express the solution q(t; q0, λ̄, [y]) on [t0, t0 + T ] in the closed form as follows:

q(t; q0, λ̄, [y]) = e
∫

t

t0
P̃ (y(τ),λ̄,τ)dτ

q0 +

∫ t

t0

e
∫

t

τ
P̃ (y(s),λ̄,s)dsw̃(y(τ), λ̄, τ)dτ.

Denoting λ̃ = col(λ̄, q0), g(y, λ̃, t) = ṽ(y, q(t; q0, λ̄, [y]), λ̄, t) we therefore arrive at the transformed equa-
tions of (2.2):

ẋ = A0x+ bϕ(y, t)T θ̃(θ) + g(y, λ̃, t)

y = CTx, x(t0) = x0.
(2.3)

The core problem we are interested in (2.3) is as follows:

Problem 2.1. Let (2.3) be given, and its solutions are defined on [t0, t0+T ]. Suppose that all functions
in the right-hand side of (2.2) are known, but true values of x0, θ̃, λ̃ are unknown. Infer the values of
x(t0), θ̃(θ), λ̃ from the measurements of y(t; t0, x0, θ̃, λ̃) = CTx(t; t0, x0, θ̃, λ̃) over [t0, t0 + T ].

The question is if there is an equivalent integral formulation such as e.g. (1.5) of this problem for (2.3)?
If such an integral formulation exists then whether a reduced-complexity version of this formulation can
be stated so that the dimension of the parameter vector in the reduced formulation is smaller than that
of in the original problem? Answers to these questions are provided in the next section.
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3. Main Result

3.1. Indistinguishable parameterizations of (2.3)

We begin with the following property of linear systems regarding input detectability (cf [25])

Lemma 3.1. Consider

ẋ = Ax+ u(t) + d(t),
y = CTx, x(t0) = x0, x0 ∈ R

n,
(3.1)

where

A =







a1
...
an

In−1

0






, C = (1, 0, . . . , 0)T ,

and x, u, d : R → R
n, u ∈ C1, d ∈ C. Let u(·), u̇(·), d(·) be bounded: max{‖u(t)‖, ‖u̇(t)‖} ≤ B, ‖d(t)‖ ≤

∆ξ for all t ≥ t0. Then the following hold:

1) if the solution of (3.1) is globally bounded for all t ≥ t0 then, for T sufficiently large, there are
κ1, κ2 ∈ K:

‖y(τ)‖∞,[t0,t0+T ] ≤ ε ⇒ ∃ t′(ε, x0) ≥ t0 : ‖z1(τ) + u1(τ)‖∞,[t′,t0+T ] ≤ κ1(ε) + κ2(∆ξ),

where z1 = (1, 0, . . . , 0)z,

ż = Λz +Gu, Λ =



−b

...

...

In−2

0



 ,

G =
(

−b In−1

)

, z(t0) = 0,

(3.2)

and b = (b1, . . . , bn−1)
T : real parts of the roots of sn−1 + b1s

n−2 + · · ·+ bn−1 are negative.
2) if d(t) ≡ 0, then y(t) = 0 for all t ∈ [t0, t0 + T ] implies existence of p ∈ R

n−1

(1, 0, . . . , 0)eΛ(t−t0)p+ z1(t) + u1(t) = 0 (3.3)

for all t ∈ [t0, t0 + T ].

Proof of Lemma 3.1 is provided in the Appendix.
According to Lemma 3.1 the following two sets of parameters, associated with every θ̃, λ̃, need special

consideration. The first set is defined as

E0(θ̃, λ̃, T ) = {(θ′, λ′), θ′ ∈ R
r, λ′ ∈ R

d+k |
bϕ(y(t), t)T (θ′ − θ̃) + g(y(t), λ′, t)− g(y(t), λ̃, t) = 0 for all t ∈ [t0, t0 + T ]}.

The set E0(θ̃, λ̃, T ) contains all parameterizations of (2.3) which are indistinguishable from each other pro-
viding that the values of x(t) are known for all t ∈ [t0, t0+T ]. That is, if x(t; t0, x0, θ̃, λ̃) = x(t; t0, x0, θ

′, λ′)
for all t ∈ [t0, t0 + T ] then (θ′, λ′) ∈ E0(θ̃, λ̃, T ).

Denote

η(θ̃, λ̃, θ′, λ′, p, t) = ϕ(y(t), t)T (θ′ − θ̃) + g1(y(t), λ
′, t)

− g1(y(t), λ̃, t) + C̃T eΛ(t−t0)p+ z1(t; t0, λ
′)− z1(t; t0, λ̃),

where Λ, C̃, z(t; t0, λ
′) are defined as in (3.2) with u(t) replaced by g(y(t), λ′, t). The second set is defined

as

E(θ̃, λ̃, T ) = {(θ′, λ′), θ′ ∈ R
r, λ′ ∈ R

d+k |
∃ p(θ̃, λ̃, θ′, λ′) ∈ R

n−1 : η(θ̃, λ̃, θ′, λ′, p, t) = 0 for all t ∈ [t0, t0 + T ]}.
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In accordance with Lemma 3.1 the set E(θ̃, λ̃, T ) contains all parametrization of (2.3) that are indistin-
guishable on the interval [t0, t0 + T ] on the basis of accessing only the values of y(x(t; t0, x0, θ, λ)). In
other words, if y(x(t; t0, x0, θ̃, λ̃)) = y(x(t; t0, x

′
0, θ

′, λ′)) for all t ∈ [t0, t0 + T ] then (θ′, λ′) ∈ E(θ̃, λ̃, T ). If
the set E(θ̃, λ̃, T ) contains more than one element then (2.3) is not uniquely identifiable on [t0, t0+T ] [7].
Here, for simplicity, we will focus on systems (2.3) that are uniquely identifiable on [t0, t0 + T ]:

Assumption 3.1. Sets E0(θ̃, λ̃, T ) and E(θ̃, λ̃, T ) coincide and contain no more than one element.

3.2. Integral reduced-order formulation of the inverse problem for (2.3)

Before we proceed with presenting an equivalent integral formulation of Problem 2.1 let us first introduce
several additional components and corresponding technical assumptions. Let l ∈ R

n be a vector satisfying
the following condition:

P (A0 + lCT ) + (A0 + lCT )TP = −Q, Pb = C,

where P,Q are some symmetric positive definite matrices. According to the Meyer-Kalman-Yakubovich-
Popov lemma, such vector will always exist since the polynomial sn−1 + b1s

n−2 + · · ·+ bn−1 is Hurwitz.
Consider

d

dt

(

ξ1
ξ2

)

=

(

A0 + lCT bϕ(y(t), t)T

−ϕ(y(t), t)CT 0

)(

ξ1
ξ2

)

, (3.4)

and let Φ(t, t0) be its corresponding normalized fundamental solutions matrix: Φ(t0, t0) = In+r.

Theorem 3.2. Consider (2.3) and suppose that Assumption 3.1 holds. Let y(·), ϕ(y(·), ·), g(y(·), λ, ·) be
T -periodic on [t0,∞] for all λ, and the function ϕ(y(·), ·) satisfy:

∫ t0+T

t0

ϕ(y(τ), τ)ϕ(y(τ), τ)T dτ ≥ δIr, δ > 0.

Then the following statements are equivalent

1) ŷ(λ′, t) = y(t) for all t ∈ [t0, t0 + T ], where ŷ : Rd+k × R → R:

ŷ(λ′, t) = (1 0 . . . 0)
(

Φ(t, t0)R(λ′) + Φ(t, t0)

∫ t

t0

Φ(τ, t0)
−1

(

g(y(τ), λ′, τ)− ly(τ)
y(τ)ϕ(y(τ), τ)

)

dτ
)

R(λ′) = (In+r − Φ(t0 + T, t0))
−1Φ(t0 + T, t0)

∫ t0+T

t0

Φ(τ, t0)
−1

(

g(y(τ), λ′, τ)− ly(τ)
y(τ)ϕ(y(τ), τ)

)

dτ.

(3.5)

2) (1 0 · · · 0)x(t; t0, x0, θ̃, λ
′) = y(t) for all t ∈ [t0, t0 + T ].

Furthermore, the values of x0, θ̃ satisfy

(

x0

θ̃

)

= R(λ′). (3.6)

Proof. Let us first show that 1) ⇒ 2). Recall (see e.g. [17]) that assumptions of the theorem imply
existence of positive numbers ρ,D > 0:

‖Φ(t, t′0)‖ ≤ De−ρ(t−t′0) for all t ≥ t′0, t, t′0 ∈ [t0,∞).

Hence all eigenvalues of the matrix In+r −Φ(t0 + T, t0) are non-zero, and (In+r −Φ(t0 + T, t0))
−1 exists.

Consider χ = (χ1, χ2):

d

dt

(

χ1

χ2

)

=

(

A0 + lCT bϕ(y(t), t)T

−ϕ(y(t), t)CT 0

)(

χ1

χ2

)

+

(

g(y(t), λ′, t)− ly(t)
y(t)ϕ(y(t), t)

)

(3.7)
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It is clear that solutions of (3.7) are defined for all t ≥ t0 providing that the definition of y(·),
g(y(·), λ′, ·), and ϕ(y(·), ·) are extended (periodically) on the interval [t0,∞). Introduce the function
ζ(·) = (x(·, t0, x0, θ̃, λ̃), θ̃) (in which the domain of the function x(·, t0, x0, θ̃, λ̃) definition is extended to
[t0,∞)), and consider the difference

ξ = χ− ζ.

Dynamics of ξ satisfy (3.4) with ξ1(t0) = χ1(t0)−x(t0), ξ2(t0) = χ2(t0)− θ̃. Moreover, ŷ(λ′, t) = CTχ1(t)
for all t ∈ [t0, t0 + T ] (or in [t0,∞) if ŷ(λ′, ·) is periodically extended on [t0,∞)).

Let ŷ(λ′, t) ≡ y(t). This implies that χ2 − θ̃ = const for all t ∈ [t0, t0 + T ]. Hence according to Lemma
3.1 (χ2(t0), λ

′) belong to E(θ̃, λ̃, T ). Given that sets E(θ̃, λ̃, T ) and E0(θ̃, λ̃, T ) coincide and contain just
one element, θ̃, λ̃, we conclude that χ2(t0) = θ̃, λ′ = λ̃.

Notice that limt→∞ ξ(t) = 0 for all χ(t0), and that

Φ(t, t0)R(λ′) + Φ(t, t0)

∫ t

t0

Φ(τ, t0)
−1

(

g(y(τ), λ′, τ)− ly(τ)
y(τ)ϕ(y(τ), τ)

)

dτ (3.8)

is the unique exponentially stable periodic solution of (3.7). This implies that (3.6) holds.

Let us show that 2) ⇒ 1). Let θ̃, λ′ be parameters for which the following identity holds:
y(x(t; t0, x0, θ̃, λ

′)) = y(t) for all t ∈ [t0, t0 + T ]. Consider the function ζ(·) defined earlier. Given
that (3.8) is the unique exponentially stable periodic solution of (3.7), that limt→∞ ζ(t) = 0 for arbitrary
choice of initial conditions (i.e. vectors θ̃, x(t0), and χ1(t0), χ2(t0)) and that ζ(t) ≡ 0 if χ1(t0) = x0,
χ2(t0) = θ̃, one concludes that ŷ(λ′, t) = y(x(t; t0, x0, θ̃, λ

′)) = y(t) for all t ∈ [t0, t0 + T ]. �

Remark 3.3. One may argue that it is, in principle, possible to obtain integral formulations of the
corresponding inverse problem without using adaptive observer-inspired structures. Note, however, that
since the original matrix A(θ) is allowed to depend on unknown parameters θ, explicit expressions of
solutions of (2.2) will involve extra nonlinearly parameterized terms, eA(θ)(t−t0). If closed-form expressions
are applied to (2.3) then the drawback is that the overall unknown parameters vector is (x0, θ̃, λ̃), and
its dimension is n+ r + d+ k. In the proposed solution dimension of the unknown parameters vector is
reduced to d+ k which is advantageous for systems with large number of unknowns.

Remark 3.4. The uncertainty reduction achieved in the proposed method is due to the assumption that
all functions in the right-hand side of (2.3) are T -periodic. Whereas such periodicity assumptions may
not always hold, they are not particularly difficult to satisfy (at least approximately) in the laboratory
conditions.

Remark 3.5. Instead of dealing with continuous-time signals, y(t), one may re-formulate the above
results in the setting in which model responses and data are compared at mere N discrete points {ti} in
[t0, t0 + T ]. In this case sets E0, E will need to be re-defined so that the corresponding identities hold at
a finite number of points {ti} rather than for all t ∈ [t0, t0 +T ]. Discrete extension of the theorem allows
straightforward formulation of the inference problem as

λ̃ = arg min
λ∈Rr

N
∑

i=1

(ŷ(λ, ti)− y(ti))
2 (3.9)

which bears some similarity with [1,16]. Here, however, no discretization of the original continuous-time
dynamical model is required and ∂ŷ(λ, ti)/∂λ are computable as definite integrals.

Note also that in some applications measured data, y(t), may only be available at certain discrete
points. In this situation one can employ a suitable interpolation scheme providing that the outcome of
such an interpolation is phenomenologically adequate.
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Remark 3.6. Our method, as formulated, requires periodicity of y(·). Similar representations can be
obtained for models that do not necessarily produce periodic signals. This, however, will bear additional
costs. In absence of periodicity R(λ′) in (3.5) will generally be replaced by an unknown vector. Yet, if
the interval of observation is long enough then relative contribution of this unknown term in y(λ′, t) for t
sufficiently large will be small. Thus y(λ′, t) becomes an approximation of the measured y(t) rather than
an exact match.

Remark 3.7. The method can also be linked with [23] where periodicity of input is used for inferring
partial derivatives of outputs with respect to parameters and initial conditions. In [23] the main focus
was on deriving a method for fast numerical estimation of unique periodic solutions of the δp-subsystem
in (1.4). Here we used a somewhat different approach whereby the problem is considered through the
prism of adaptive observer design enabling us to express explicitly the values of measured trajectories as
integrals of computable functions of model parameters.

4. Examples

4.1. Predator-Prey system

Consider (1.1), and let x be the variable that is available for direct observation. Suppose that parameter
values of (1.1) correspond to the unique stable limit cycle, and for simplicity we assume that the system
evolves on the cycle (or in its sufficiently small vicinity). The corresponding parameter values and initial
conditions are set as follows:

p1 = 1, p2 = 1.3, p3 = 1, p4 = 1, p5 = 3, p6 = 0.1, (x0, z0) = (0.0053, 0.2536). (4.1)

Note that system (1.1) is not in the class of systems specified by (2.3) to which Theorem 3.2 applies. It
may, however, be transformed into this class as follows. Given that p3, p5 6= 0 we will first introduce a
new variable

q = x+
p3
p5

z.

Thus, in accordance with (1.1):

q̇ = p1x

(

1− x

p2

)

− p3zx

p4 + x
+

p3zx

p4 + x
− p6

p3
p5

z,

and the system equations in the new coordinates become:

ẋ = p1x

(

1− x

p2

)

− p5 (q − x)x

(p4 + x)

q̇ = p1x

(

1− x

p2

)

+ p6x− p6q.

(4.2)

Equation (4.2) is in the form (2.1). The latter, in turn, can be transformed into (2.3) by means of the
following closed form expression for the variable q:

q(t, p1, p2, p6) = e−p6(t−t0)q0(p1, p2, p6) + e−p6t

∫ t

t0

ep6τ

[

p1x(τ)

(

1− x(τ)

p2

)

+ p6x(τ)

]

dτ.

The observed variable, x(·), is periodic with period T = 34.05, and p6 = 0.1 6= 0. Therefore

q0(p1, p2, p6) = (1− e−p6T )−1e−p6T

∫ t0+T

t0

ep6τ

[

p1x(τ)

(

1− x(τ)

p2

)

+ p6x(τ)

]

dτ,
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Figure 1: Left panel: the values of x(t; t0, (x0, z0), p) and ŷ(λ̃, t) as functions of t for p = (p1, ..., p6)
and initial conditions specified by (4.1). Black circles indicate starting and ending points of the periodic
trajectory x(t; t0, (x0, z0), p). The values of x(t; t0, (x0, z0), p) (red curve) were obtained by numerical

integration of (1.1) by improved Euler with integration step 0.001. The values of ŷ(λ̃, t) (blue curve) have
been computed from representation (4.4) numerically by simple right-hand rectangular integration with

the same integration step. Right panel: the values of error, ŷ(λ̃, t)− x(t; t0, (x0, z0), p) as a function of t.

Hence dynamics of x obeys

ẋ = p1x− p1
p2

x2 +
p5x

2

(p4 + x)
− p5x

(p4 + x)
q(t, p1, p2, p6), (4.3)

which is of class (2.1) or (2.3) with
λ̃ = (p1, p2, p4, p5, p6).

Thus Theorem 3.2 applies, and observed periodic trajectory x(·) of system (1.1) can be represented as
an explicit integral.

Notice that the number of parameters in (4.3) is reduced to just 5 as compared to 6 in the original
equations. Moreover, since the right-hand side of (4.3) is purely nonlinearly parameterized, there is no
ϕ(·) in (3.4), A0 = 0, and the fundamental solution matrix, Φ(t, t0), becomes

Φ(t, t0) = el(t−t0), l ∈ R, l < 0.

For the sake of simplicity we set l = −1. The corresponding expression for ŷ(λ̃, t) is

ŷ(λ̃, t) =e−(t−t0)R(λ̃) +

∫ t

t0

e−(t−τ)

(

x(τ) + p1x(τ)−
p1
p2

x2(τ) +
p5x

2(τ)

(p4 + x(τ))

− p5x(τ)

(p4 + x(τ))
q(τ, p1, p2, p6)

)

dτ,

R(λ̃) =(1− e−T )−1

∫ t0+T

t0

e−(T−τ)

(

x(τ) + p1x(τ)−
p1
p2

x2(τ) +
p5x

2(τ)

(p4 + x(τ))

− p5x(τ)

(p4 + x(τ))
q(τ, p1, p2, p6)

)

dτ.

(4.4)

Trajectories x(·; t0, (x0, z0), p) and ŷ(λ̃, ·) are shown in Fig. 1. Notice that trajectories x(·; t0, (x0, z0), p)
and ŷ(λ̃, ·) nearly coincide with discrepancies of the order of 10−4 that are due to the differences in
numerical integration.
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Figure 2: Evolution of estimates p̂1, p̂2, p̂4, p̂5, p̂6 of true values of parameters p1, p2, p4, p5, p6.

Table 1: True (first row), Initial (second row), and Estimated (third row) parameter values of (4.2).

Vector λ̃ = (p1, p2, p4, p5, p6)

p1 p2 p4 p5 p6
1 1.3 1 3 0.1
0.3 0.3 0.3 1.5 0.01

0.9999 1.3018 0.9991 2.9966 0.1

In order to illustrate how our method works for this class of systems let us suppose that y(ti) =
x(ti; t0, (x0, z0), p) be the measured data, and values of p1, . . . , p6 be unknown. For this particular sim-
ulation ti formed an equispaced grid in [t0, t0 + T ] with ti+1 − ti = 0.001 for all i = 0, 1, . . . , N − 1.
The values x(ti; t0, (x0, z0), p) were derived using the Runge-Kutta 4th order method. As a measure of

closeness between y(·) and ŷ(λ̃, ·) we used the sum
∑N

i=0(y(ti)− ŷ(λ̃, ti))
2, and as a parameter estimation

routine we used the Nelder-Mead algorithm [22]. The values of reflection, expansion, and contraction
coefficients in the algorithm were set to 1, 2, and 0.5, respectively.

Behavior of parameter estimates are shown in Fig. 2, and their initial and final values are provided
in Table 1. As one can see from the table and plots, after roughly 1400 steps the estimates are already
in close proximity of true values of model parameters. This particular simulation took 21.06 seconds in
Matlab R2015a on standard desktop with Intel i5-2400 CPU and 8Gb of memory.

Let us now consider another relevant model that will enable us not only to demonstrate existence of
explicit integral representation of its solutions but also to illustrate the point that sometimes the overall
number of unknown parameters can be reduced as a result of the proposed integral representation.

4.2. Morris-Lecar system

Consider a model describing dynamics of voltage oscillations generated in barnacle giant muscle fiber
[21]. The model can be viewed as a physiologically relevant reduction (see e.g. [14]) of the celebrated
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Hodgkin-Huxley system [13] of equations. The model equations are as follows:

ẋ =gCam∞(x)(x+ ECa) + gKq(x+ EK) + gL(x+ EL) + I

q̇ =− 1

τ(x)
q +

w∞(x)

τ(x)
,

y =x,

(4.5)

where

m∞(x) = 0.5

(

1 + tanh

(

x− V1

V2

))

w∞(x) = 0.5

(

1 + tanh

(

x+ V3

V4

))

τ(x) = T0

(

cosh

(

x+ V3

2V4

))−1

.

Variable x is the measured voltage, q is the recovery variable. The values of ECa, EK , EL are normally
known (ECa = −100, EK = 70, EL = 50); other parameters may vary from one cell to another.

It is clear that equations (4.5) are of the form (2.2). Moreover, if the model operates in the oscillatory
regime then the right-hand side is periodic in t, including the variable q. In addition the integral

∫ t0+T

t0

− 1

τ(x(s))
ds < 0,

where if T is the period of oscillations, for practically relevant values of T0, V3, V4. Assuming that
observations are taking place when the system’s solution are on (or sufficiently near) the stable period
orbit we can express the variable q(t) as follows:

q(t) =e
∫

t

t0
− 1

τ(x(s))
ds
q0 +

∫ t

t0

e
∫

t

z
− 1

τ(x(s))
dsw∞(x(z))

τ(x(z))
dz

q0 =(1− e
∫ t0+T

t0
− 1

τ(x(s))
ds)−1

∫ t0+T

t0

e
∫

t0+T

z
− 1

τ(x(s))
dsw∞(x(z))

τ(x(z))
dz.

This brings equations (4.5) into the form (2.3) with parameters θ̃ = (gL, I), and λ̃ =
(V1, V2, V3, V4, T0, gCa, gK).

For the purpose of illustration we set the values of parameters θ̃, λ̃ as specified in Table 2. For the
data generated at these parameter values the system is uniquely identifiable, and hence Assumption 3.1
holds. According to Theorem 3.2, the problem of finding the values of θ̃, λ̃ can be now formulated as that
of matching the function ŷ(λ′, t) defined in (3.5) to y(t) over [t0, t0 + T ]. And in view of Remark 3.5 it
reduces to solving the unconstrained program (3.9).

In order to evaluate ŷ(λ′, t), as a function of parameter λ′ at a given t one needs to know the fun-
damental solutions matrix Φ(t, t0) for all t ∈ [t0, t0 + T ]. In this example this matrix was constructed
numerically (using Dormand-Prince method and with fixed step size 0.0002) from linearly independent
solutions of

ż =





l y(t) 1
−y(t) 0 0
−1 0 0



 z, l = −1 (4.6)

starting from (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T .
Points ti in (3.9) were evenly spaced with ti+1 − ti = 0.04, and the BFGS quasi-Newton method was

used to find a numerical estimation of the solution of (3.9). For computational convenience, instead of

83



I.Yu. Tyukin, A.N. Gorban, T.A. Tyukina, J. M. Al-Ameri, Yu.A. Korablev Fast Sampling of Evolving Systems

Table 2: True (first row) and Estimated (second) parameter values of (4.5).

Vector λ̃ = (V1, V2, V3, V4, T0, gCa, gK)

V1 V2 V3 V4 T0 gCa gK
−1 15 −10 14.5 3 −1.1 −2

−0.95 15.08 −10.15 14.44 3.04 −1.12 −2.02

Vector θ̃ = (gL, I)

gL I
−0.5 10

−0.539 10.65

0 2 4 6 8 1010 x 10
3

number of steps

20

15

10

5

0

-5

-10

-15

V
4

V
3

T
0

g
K

g
Ca

V

V
2

V -1

V
1

V V
2

V -1

Figure 3: Estimates and true values of V1/V2, 1/V2, V3, V4, T0, gCa, gK .

looking for V1, V2 directly we were estimating ratios 1/V2 and V1/V2 respectively. Similarly, as follows
from (4.6), the estimate of parameter I is not the value of θ̃2 but rather is the sum θ̃2− θ̃150. We run the
method for 12000 iterations, and results of the estimation are shown in Table 2 and Fig. 3. In order to
verify the quality of parameter estimation we run (4.5) with both estimated and true values of parameters.
Results of this simulation are show in Fig. 4, upper panel. Note that frequency of the estimated x(t)
is higher than that of the measured data. This explains noticeable difference between trajectories at
the end of the interval. In order to compensate for this difference we adjusted parameter θ̃2 (regulating
the frequency of oscillations in the original model) by −0.07. Simulated trajectory of (4.5) after this
adjustment is shown in Fig. 4, lower panel. It is worth noticing that even though both estimated and
simulated x(t) are matching reasonably well there are still errors. The origin of these errors is likely to
be 1) due to numerical errors in estimating the matrix Φ(t, t0), and 2) due to the ill-conditioning of the
original problem. Indeed, as Fig. 5 suggests, there is a long shallow valley in a vicinity of the optimum.

The estimation took approximately 1 hour on a standard PC (same configuration as in the previous
example) in Matlab R2015a. We observed that most of the time was spent in the calculations of ∂ŷ

∂λ̃
which is not surprising given the integration (3.5) was performed over a relatively dense and uniform grid
of points. On the other hand, this indicates that in this and similar cases scalability of the procedure is
expected to grow nearly linear with dimension of λ̃. This will be tested in experiments in future.
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Figure 4: Variables x(t) of the state vector of (4.5) for true values of θ̃, λ̃ (red curves) and estimated

values of θ̃, λ̃ from Table 2 (blue curves). The left panel shows the case when no adjustments to estimated
parameters were made. The right panel illustrates how the reconstructed x(t) changes when the parameter
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i=1(ŷ(λ̃, ti) − y(ti))
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estimated (gCa, 1/V2), and green star corresponds to the true values of (gCa, 1/V2).

In order to assess potential computational advantage of the proposed integral representations we com-
pared the time needed for 1000 evaluations of y(t) on CPU and GPU over the interval [t0, t0+T ] for 1000
randomly chosen parameter values. The results are summarized in Table 3 (upper table). We see that
GPU implementation of the same procedure resulted in the 39-fold performance gain. Our second set of
experiments assessed the time needed for running 1000 explicit Euler integrations over the same period
and for the same parameter values. The results are shown in Table 3 (bottom table). These experiments
showed that explicit integral representations, if implemented on GPU, are approximately 15 times faster
than direct Euler integration on CPU.

We also notice that 1000 model evaluations using explicit Euler integration on GPU is approximately
2 times faster than the proposed integral implementations in this problem. Yet, our proposed scheme
returns the estimates of all initial conditions and parameters that enter the right-hand side linearly
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Integral representation

CPU Xeon, 1000 times GPU K10, 1000 times Ratio
24.041 sec 0.616 sec 39.009

Direct explicit Euler integration

CPU Xeon, Euler 1000 times GPU K10, Euler 1000 times Ratio
9.354 sec 0.395 sec 23.65

Table 3: Performance comparison chart.

(2 parameters, one initial condition). Furthermore, it enables to consolidate all computational power
of the GPU into a single stream of computations which will be advantageous for local and inherently
iterative optimization methods such as e.g. gradient-based search. In this regards comparing amount
of time spent in integrating the corresponding sensitivity functions system with our explicit integral
representation would be a fairer setting. This will be done in our future work.

5. Conclusion

We presented a technique for fast reconstruction of state and parameters from observed trajectories of
evolving processes. The technique employs ideas from adaptive observers design to express measured tra-
jectories as explicit functions of unknown parameters and initial conditions. Such integral representation
enables to exploit advantages of using parallel computational streams for efficient model evaluations, and
presents a solution to a class of inverse problems that may be made scalable with computational resources
available. The method applies to both linearly and nonlinearly parameterized systems. Moreover, it has
been shown that the method allows to reduce dimensionality of the problem to that of the dimension of
the vector of parameters entering the right-hand side of the model nonlinearly.

With respect to applicability of the method for predicting drastic changes in behavior of systems that
are being investigated, we note that perhaps tracking only those bifurcations that persist under small
perturbations is relevant for these purposes [10], [11]. This approach to predictive modelling is similar to
the ideas of structural sensitivity/insensitivity considered in [2].

The viability of the method was tested on two examples. The method performed well in these problems.
We have also shown that the proposed approach can benefit from parallel implementation of explicit
numerical integration involved. It would be interesting to see if the same approach could be applied to a
broader range of problems. Answering to this call will be the subject of our future work in this direction.

Acknowledgements. Ivan Tyukin is thankful to the Russian Foundation for Basic Research (research project No.
15-38-20178) for partial support.
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6. Appendix

Lemma 6.1. Consider ẏ = ky + u(t) + d(t), k ∈ R, u, d : R≥t0 → R, u ∈ C1, d ∈ C0, and let
max{|u(t)|, |u̇(t)|} ≤ B, |d(t)| ≤ ∆ξ. Finally, let T, ε be non-negative real numbers such that T >

√
ε.

Then

‖y‖∞,[t0,t0+T ] ≤ ε ⇒ ‖u‖∞,[t0,t0+T ) ≤
√
ε(1 + e|k|

√
ε +B) +∆ξ.

Proof. Let L be an arbitrary element of [0, T ]. Noticing that y(t) for t ≥ t0 +L, L > 0, can be expressed

as: y(t) = y(t − L)ekL +
∫ t

t−L
ek(t−τ)(u(τ) + d(τ))dτ and using the Mean-value theorem we obtain:

y(t)−y(t−L)ekL = Lek(t−τ ′)(u(τ ′)+d(τ ′)), τ ′ ∈ [t−L, t]. Hence ε(1+ekL) ≥ Lek(t−τ ′)(|u(t)|−LB−∆ξ),
and

∆ξ + LB + ε(1+ekL)
Lmin{1,ekL} ≥ ∆ξ + LB + ε(1+ekL)

Lmin{1,ek(t−τ′)} ≥ |u(t)| ∀t ≥ t0 + L.

Given that L can be chosen arbitrarily in the interval [0, T ] we let L =
√
ε, and thus |u(t)| ≤ √

ε(1 +
ek

√
ε)max{1, e−k

√
ε}+B

√
ε+∆ξ ≤ √

ε(1 + e|k|
√
ε +B) +∆ξ ∀ t ∈ [t0 +

√
ε, t0 + T ].

Finally, given that |u̇(t)| ≤ B for all t ∈ [t0, t0 + T ], including in the interval [t0, t0 +
√
ε], we conclude

that
|u(t)| ≤

√
ε(1 + e|k|

√
ε + 2B) +∆ξ ∀ t ∈ [t0, t0 + T ].

�
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6.1. Proof of Lemma 3.1

Let us rewrite (3.1) as

ẏ = a1y + C̃x̃+ u1(t) + d1(t)

˙̃x = Ãx̃+ ãy + bu1 +Gu(t) + d̃(t),

where ã = col(a2, . . . , an), C̃ = col(1, 0, . . . , 0), d̃(t) = col(d2(t), . . . , dn(t)), and

G =
(

−b In−1

)

, Ã =

(

0 In−2

0 0

)

.

Let ‖y(t)‖∞,[t0,t0+T ] ≤ ε and denote e(t) = C̃T x̃+ u1(t).

According to Lemma 6.1, there are υ1, υ2 ∈ K such that ‖e(t)‖ = ‖C̃T x̃+ u1(t)‖ ≤ υ1(ε) + υ2(∆ξ) for
all t ∈ [t0, t0 + T ].

Using the notation above we obtain: ˙̃x = (Ã− bC̃T )x̃+ ãy(t) + G̃u(t) + be(t) + d̃(t).
Matrix Ã − bC̃T = Λ is Hurwitz, and hence there are D, k ∈ R>0 such that ‖eΛ(t−t0)‖ ≤ De−k(t−t0).

Therefore ‖C̃T x̃(t)− C̃T
∫ t

t0
eΛ(t−τ)Gu(τ)dτ‖ ≤ De−k(t−t0)‖x̃(t0)‖+ D

k
(‖a‖ε+‖b‖(υ1(ε)+υ2(∆ξ))+∆ξ).

Noticing that z1 = C̃T
∫ t

t0
eΛ(t−τ)Gu(τ)dτ , denoting κ(ε) = 2D

k
(‖a‖ε + ‖b‖υ1(ε)) + υ1(ε), κ2(∆ξ) =

2D
k
(∆ξ + ‖b‖υ2(∆ξ)) + υ2(∆ξ), and

t′(ε, x0) = t0 +
1

k
ln

(

D‖x0‖
ε

)

we can conclude that there is a t′(ε, x0) ≥ t0 such that

‖z1(τ) + u1(τ)‖∞,[t,t0+T ] ≤ κ(ε) + ε+ κ2(∆ξ) = κ1(ε) + κ2(∆ξ).

for all t ∈ [t′(ε, x0), t0 + T ], providing that T is sufficiently large to satisfy t0 + T > t′(ε, x0).
Noticing that y(t) ≡ 0 ⇒ e(t) ≡ 0 ensures that (3.3) holds too. �
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