

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Generalized Dirichlet to Neumann operator on invariant differential forms and equivariant cohomology

Qusay S.A. Al-Zamil, James Montaldi*

School of Mathematics, University of Manchester, Manchester M13 9PL, England, United Kingdom

ARTICLE INFO

Article history: Received 23 May 2011 Received in revised form 21 November 2011 Accepted 22 November 2011

MSC: 58J32 57R19 55N91 57R91

Keywords: Algebraic topology Equivariant topology Equivariant cohomology Cup product (ring structure) Group actions Dirichlet to Neumann operator

ABSTRACT

In recent work, Belishev and Sharafutdinov show that the generalized Dirichlet to Neumann (DN) operator Λ on a compact Riemannian manifold M with boundary ∂M determines de Rham cohomology groups of M. In this paper, we suppose G is a torus acting by isometries on M. Given X in the Lie algebra of G and the corresponding vector field X_M on M, Witten defines an inhomogeneous coboundary operator $d_{X_M} = d + \iota_{X_M}$ on invariant forms on M. The main purpose is to adapt Belishev–Sharafutdinov's boundary data to invariant forms in terms of the operator d_{X_M} in order to investigate to what extent the equivariant topology of a manifold is determined by the corresponding variant of the DN map. We define an operator Λ_{X_M} on invariant forms on the boundary which we call the X_M -DN map and using this we recover the X_M -cohomology groups from the generalized boundary data (∂M , Λ_{X_M}). This shows that for a Zariski-open subset of the Lie algebra, Λ_{X_M} determines the free part of the relative and absolute equivariant topology groups from Λ_{X_M} . These results explain to what extent the equivariant topology of use partially determine the ring structure of X_M -cohomology groups from Λ_{X_M} .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The classical Dirichlet to Neumann (DN) operator $\Lambda_{cl}: C^{\infty}(\partial M) \longrightarrow C^{\infty}(\partial M)$ is defined by $\Lambda_{cl}\theta = \partial \omega / \partial \nu$, where ω is the solution to the Dirichlet problem

$$\Delta \omega = 0, \qquad \omega |_{\partial M} = \theta$$

and v is the unit outer normal to the boundary. In the scope of inverse problems of reconstructing a manifold from the boundary measurements, the following question is of great theoretical and applied interest [7]: *to what extent are the topology and geometry of M determined by the DN operator*?

In this paper we are interested in the equivariant topology analogue of this question.

Much effort has been made to address this (non-equivariant) question. For instance, in the case of a two-dimensional manifold M with a connected boundary, an explicit formula is obtained which expresses the Euler characteristic of M in terms of Λ_{cl} and the Euler characteristic completely determines the topology of M in this case [6]. In the three-dimensional case [5], some formulas are obtained which express the Betti numbers $\beta_1(M)$ and $\beta_2(M)$ in terms of Λ_{cl} and their operator on vector fields, $\vec{\Lambda} : C^{\infty}(T(\partial M)) \longrightarrow C^{\infty}(T(\partial M))$. This culminates in recent work of Belishev and Sharafutdinov [7] who prove that the real additive de Rham cohomology of a compact, connected, oriented smooth Riemannian manifold M of

* Corresponding author.

E-mail addresses: Qusay.Abdul-Aziz@postgrad.manchester.ac.uk (Q.S.A. Al-Zamil), j.montaldi@manchester.ac.uk (J. Montaldi).