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Abstract

In this paper, we consider the problem of finding hypergeometric solutions for recurrences
of arbitrary order with the additional restriction that the leading and trailing coefficients are
constant. Also we consider the problem of finding rational solutions of the linear difference
equation with pelynomial coefficients without any restriction. We give an explicit formula for
a universal denominator of a linear difference equation with polynomial coefficients. These
approaches do not require any factorization, but only ged (greatest common divisor)
computations.

Keywords : Gosper's al-gorithm, hypergeometric solution, rational solution, universal
denominator.

1. Introduction

Let N be the set of nonnegative integers, K be a field of characteristic zero, K(n) be
the field of rational functions over K, and K[n] be the ring of polynomials over K. As usual,

we assume that subject to normalization the ged of two polynomials always takes a value as a
monic polynomial, namely, polynomials with the leading coefficient beingl. Recall that a
nonzero term ¢, is called a hypergeometric term over K if there exists a rational function

re K(n) such that

Int =r(n).
n
If r(n) =a(n)/b(n), where a(n),b(n)e K[n], then the function a(n)/b(n) is called a rational
representation of the rational function r(n). If additionally gcd(a(n),b(n)) =1 holds, then
a(n)/b(n) is called the reduced rational representation of r(n).
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In [11], Petkoviek presents algorithm Hyper to find all hypergeometric solutions of the
recurrence

d
Z p; (n): Zpwi < 0,
=0

where py(n), py(n),..., p,(n) arc given polynomials over K. In the same paper, he gives an
algorithm to find all solutions that are linear combinations of hypergeometric terms of the
recurrence

o
Do)z, =t,, (1.1

=0

where 7, is a given hypergeometric term over K. In another paper, Petkoviek [12]
gencralizes Gosper's algorithm [5] (also see [6,7,8,9,10,13]) to find all hypergeometric
solutions of the recurrence (1.1), provided that p,(n) and p,(n) are constant,

Consider the linear difference equation

d
> pi(m)y(n+i)= p(n), (1.2)

=0

where po(n), py(n),..., pa(n), p(n)e K{n) are given  polynomials such that
po(n)#0,py(n) =0, Recall that g(n)e K[n] is a universal denominator for (1.2) if and only
if for every solution y(n)e K(n) to (1.2) there exists a [(n)e K[n] such that
y(n)= f(n)/g(n). The common idea of all algorithms that compute all rational solutions of
the linear difference equation (1.2), is to construct a universal denominator g(n). After
constructing g(n) one can substitute y(n) = f(n)/g(n), where f(n) is unknown polynomial,
in (1.2) and then use one of the algorithms given in [1,4,11] to find 21l polynomial solutions
J(n) of the resulting equation which yields all rational solutions f(n)/g(n). Therefore
computing the universal denominator is a key step for computing rational solutions (see
[2,3,14]). Recall that the dispersion dis (a(n),b(n)) of the polynomials a(n),b(n)e K[n] is the
greatest nonnegative integer & (if it exists) such that a(n) and b(n+£k) have a nontrivial
common divisor, i.e.,

dis(a,b) = max{k € N| degged(a(n),b(n+k)) 2 1}

If & does not exist then we set dis(a,b) = ~1. Abramov [3] gave an algorithm to compute a
universal denominator G(n) for (1.2), Define

L=dis(p,(n—d), py(n)) =maxfke N |deg ged(py(n—d), po(n+k))= 1}. (1.3)

The explicit formula for Abramov’'s universal denominator is

- 196 -

|



Al-Qadisyah Journal for pure Science. Vol.13 No.4  year 2008

The first scientific congress for science col. Which's.hold in 26-27 March Year 2008

G(n) = god([po (n + LI [p, (n = )12
For more details about Abramov's universal denominator see [14].

The main result of this paper is the observation that if we express the rational functions in
terms of their reduced rational representations, then finding hypergeometric solutions
reduces to finding polynomial solutions. Also we give an explicit formula for a universal
denominator of the linear difference equation (1.2).

2. Gosper's Algorithm for Recurrences of Arbitrary Order

In this section we consider the problem of finding hypergeometric solutions z, for the
recurrence (1.1) where /, is a given hypergeometric term, provided that p,(n) and py(n)

are nonzero constant. If (1.1) has a hypergeometric solution, then the left hand-side of (1.1)
can be written as a rational function multiple of z,. Let y(n) =z, /¢, . It follows that y(n) is

a rational function of #. Substituting y(n)t, for z, in (1.1) results in

d i—|
. pi(n)-yln+i)-[r(n+ j)=1, @.1)

i=0 j=0

where r(n)=1,, /1, is a rational function of ». Hence we need to find rational solutions of

(2.1).
Theorem 2.1. Let r(n) and y(n) in equation (2.1) be in terms of their reduced rational
representations:
a(n) [(n)
r(n)=——, y(n)=—-=. 2.2)
b(n) g(n)
Let ky be defined by
ko =dis(a(n—1),b(n)) = max{k eEN ‘ degged(a(n—1),b{(n+k)) > 1}. 2.3)

Then

ke kg ,
g(m) | ged [To(n+ ) JJatn-j-n* |.
=0 J=0

Proof. Using y(n), defined in (2.2), in (2.1) gives

d=1

d d -l d-1 d
> i) flnti) Hg(” + j)-Hfr(n’ - ‘;')va{ n+ )= Hh{ n+ f)- né’“‘ +) 0 (24)
j=0 j=0 J=i j=0 J=0

i=0
J#
All terms in this equation except the one with / =0 are divisible by g(n), so
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d d-1
g(n)| pony [ gtn+ i)-Totm+ ). @5
j=0

j=

Similarly, looking at the term with /=d and substituting n —d for n, we find that

d d
gn) | py(m)-T1gn-i)-[Tatn= - (2.6)
j=l J=t
Shifting » by 1 in (2.5) yields
d+1 d
gn+1)| po(n) [ g(n+)-TLb(n+ 1. 2.7
=2 j=1

By multiplying (2.5) and (2.7) it follows that

d d-l
gn) | po(m? - JLgn+? g(n+d +1)-b(n)-[Tb(n + /)2 b(n+4d).
Jj=2 Jj=l

By induction we get that for k£ 21:

oy drk-l d+k=2 .
g po? " T g+ 07 I bn+ 0P,
i=k j=0

where the 7's are positive integers and the [ 's are defined by

27, j=01... k-2
B =12, j=k—=1k,...,d-1 . 2.8)
okt 2 i=dd +1,.,d k-2

Since K has characteristic zero, there is a large enough & such that
ged(g(n),g(n+ /) =1,
for j > k. It follows that
Skl d+k-2 B,
gy | po)®* - T bn+ 7,

j=0

for all large enough % . Analogously, from (2.6) we get

o, d+k=2
e pa? " I at-i-17,
§

for all large enough k, where the 8°’s are defined as in (2.8). Since py(n) and p,(n) are
constants, it follows that
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d+k=2 g, 4k .
g(n)lgcd[ H b(n+ )7, H a(n—j -1 1,
j=0 J=0

for all large enough k. By using the definition of the dispersion we obtain

k-1 8 k-1 s
g(n)lgcd[l—[b(nﬂ) 7Tatn-j-0% ],
J=0

/=0

for k > k;. The rest of the proof follows when & goes to infinity in this equation and by the

definition of the dispersion.
o
Now set
ul 27 ko 2/
g(my=ged [[o(n+ H* [ [a(r-/-D 2.9
j=0 j=0

in equation (2.4). If equation (2.4) can be solved for f e K[n] then

= S(n) ‘,
g(n)

is a hypergeometric solution of (1.1), otherwise no hypergeometric solution of (1.1) exists.

Algorithm 2.1.

INPUT : {p,-(n)}f,l=0 € K{n] such that p,(n) and p,(n) are nonzero constant and
r(n)e K(n)

such that ¢, /1, =r(n) forall ne N.

OUTPUT : a hypergeometric solution z, of (1.1) if it exists, otherwise “no hypergeometric
solution of (1.1) exists”.

(1) Decompose r(n) into a/b where a,b are two relatively prime polynomials.

(2) Compute k; as in (2.3).
3)If kg 20 then compute

ky & i

g(my=ged T[o(n+ ) J[atn-j-1* |,
J=0 j=0

otherwise g(n)=1.
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fin)

(4) If equation (2.4) can be solved for f e K[n] then return Z, = { ]t,, , otherwise return
gin

hno
hypergeometric solution of (1.1) exists”,

Example 2.1. We want to find all hypergeeometric solutions of

22,00 =82, —2, =1, (2.10)
[ 21 ) 2n)
where ¢, :4| oo J—:al W then
r(n) = 2tk o a(n),
' b(n)

where a(n) = (4n+2)(n” +21n+30), b(n)=(n+3)n2+195+10), and then ko =0. From
(2.9),
gln)= n® +19n+10. By (2.4) /(n) is a polynomial which satisfies

8(2n+I)(2n+3)j(n+2)—16(2n+])(n+4)f(rz+l)—(n+3)(n+4)f(n)
=(n+3)(n+4)n +191+10).
The only polynomial solution of this equation is S(n)=—(n+1(n+2). Thus

. 72\
= Fél; = | is the only hypergeometric solution of (2.10).
g(n 7 .

3. Rational Solutions of Linear Difference Equations

In this section we consider the problem of finding rational solutions of the linear difference
equation (1.2) by giving an explicit formula for a universal denominator for (1.2).

Theorem 3.1. Let v(n) in equation (1.2) be defined as in equation (2.2) and let L be defined
as in (1.3), then

’
! /!

L ) L it
_,n“r:,-JH Paln+ _;‘]2 ,;;ur[n—cfjnplftu—d—j)‘ W
=l )

/=1

gin) | ged

Proof. Using y(n), defined in (2.2), in (1.2) gives

d

d d
E piin) fla+i) Hg(n + 7) = p(n)- Hg(n + J)- (3.1)
i=0 J=0 =0
i
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All terms in this equation except the one with / = 0 are divisible by g(n), so

d
g(n)| po(n)-Jfgn+ - (3.2)

J=l

Similarly, looking at the term with i = d and substituting n —d for n, we find that

d
gn)| pg(n-d)-[Teln- - (3.3)
j=l
Shifting » by 1in (3.2) yields
d+l
gn+1) | po(n+1)-T]gtn+j)- @.4)
j=2

By multiplying (3.2) and (3.4) it follows that

d
g(n)| po(mpo(n+1)-T1etn+ i) - g(n+d+1)-
j=2

By induction we get that for £ >1:

k-1 y drk-l .
gm | pom)-TIpon+ N - T1 gln+ HY,
=k

J=!

where the y’s are positive integers. Since K has characteristic zero, there is a large enough
k such that

ged(g(n),g(n+ /) =1,
for j = k. It follows that

k-1 n
gy | po(n)- [ potn+ N>,
j=l

for all large enough & . Analogously, from (3.3) we get

k-1 .
» -t
g | pa(n=a)-[]patn-d-p*",
j=
for all large enough £ . Therefore

e . = »
g ged po[[ por+ )2 patn-d[ [ patn-d-n*" |,
=1 =l
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for all large enough k. The rest of the proof follows when % goes to infinity in this equation
and by the definition of the dispersion.
o

Now set

L = L N
g =ged peM[ [ pon+ /) pa(n=] patn—d - jy*"
j=l j=l

in equation (3.1). If equation (3.1) can be solved for [ e K[n] then y(n)= f(n)/g(n) solves
(1.2), otherwise no rational solution of (1.2) exists.

Algorithm 3.1.
INPUT : nonzero polynomials py(n), p,(n).
QUTPUT : a polynomial g(n).

(1) Compute L asin (1.3).

(2)If L=>0 then compute

L g L g
g(n) = ged po] [ potn+ N pg(n=d [ patn—d - ¥ ]
j=l Jj=l

otherwise g(n)=1.
ui

Example 3.1, We want to find a rational solution of

(2n +13n% +22n+8)y(n+3) - (2n° +11n° +18n+9)y(n+2)

(3.5)
+(2n +n? ~6nm)y(n+1)-2n® -n? =2n+1)y(n) =0.

We have py(n)=—(n—-1)2n-1)(n+1), pg(n)=(n+4)2n+1)(n+2), then L =2 and then
g(n)=(n-1(n+1)n. By (3.1), f(n) is a polynomial which satisfies

a2n+D(n+ 2)(n+ D) f(n+3)=n2n+3)n+3)(n+ 1) f(n+2)+n(2n-3)
An+3)n+2)f(n+1)=Cn-1n+3)n+D)(n+2)f(n)=0.
The polynomial f(n)= Cn(2n -3) is a solution of this equation. Thus y(n) = 1 = CM
gy a%-1

is a rational solution of (3.5).
w
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