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Abstract

trn this paper, we consider the problem of f inding hypergeometric solutions for recurrences

of arbitrary order with the additional restriction that the leading and trailing coefficients are

con:stant. Also we consider the problem of f inding rational solutions of the l inear difference

equation with polynomial coefficients without any restriction. We give an explicit formula for

a universal denominator of a linear difference equation with polynomial coefficients. These

approaches do not require any factorization, but only gcd (greatest common divisor)

computations.

Keywords: Gosper's algorithm, hypergeometric solution, rational solution, universal

denominator.

1. Introduction

Let N be the set of nonnegative integers, K be a field of characteristic zero, K(n) be

the field of rational functions over K , and K[n] be the ring of polynomials over K. As usual,

we assume that subject to normalization the gcd of two polynomials always takes a value as a
monic polynomial, namely, polynomials with the leading coefficient beingl. Recall that a

nonzero term ,n is called a hypergeometric term over K if there exists a rational function

r e K(n) such that

t4 , * ,  = r (n ) .
t r l

If r(n)=.a(n)lb(n), where a(n),b(n)e Klnl, then the function a(n)lb1n) is called a rational

representation of the rational function r(n). lf additionally gcd(a(n),b(n)) = I holds' then

a(n)lb(n) is called the reduced rational representation of r(n).
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In [i], Petkov5ek presenii aigorithm Hypilr to fi
recurrence

all hypergeometric utions of the

d

p , (n ) ,  2 , * ,  =0 ,
i=0

tvherc pu(n) ,  p1@),  .  ,p t0t )  arc g iven polynomials  over  K. In the same paper,  he g ives an

::::: 'J:,#J. 
f ind all solutions that arc l inear combinations of hypergeometric rerms of rhe

d

2 p , @ ) ' 2 , 1 i  
= t n r

i=0
(1 .1 )

where /n is a given hypergeometfic term over K. In another paper, Petkov5ek [l2j
gencralizes Gosper's algorithm [5] (also see [6,7,8,9,10,131) to find all hypergeometric
solutions ofthe recurrence (l. l), provided that p0@) and pa@) are constant.

Consider the l inear difference equation

t vhe re  po@) ,  p t@) , . . . ,  pa@) ,  p (n )e  K ln l are given polynomials such that
po? ) r0 ,p t@)  *0 '  Rcca l l t ha t  g (n )e  K [n ]  i s  a  un i ve rsa ldenomina to r to r (1 .2 )  i f  and  on ty
if for every solution y(n)e K(n) to (1.2) there exists a f (n)e K[n] such that

1,Q7)=.1-@)lg(n). ' l 'hc common idea of all algorithms that compute all rational solutions of
the l inear differcnce equation (1.2), is to construct a universal denominator g(n). After
construct ing g( i r )  onc can subst i tu te y(n)= f  (n) ls@),  where f (n)  is  unknown polynomial ,
in (1.2) and then use one of the algorithms given in [1,4,11] to find all polynomial solutions
J@) of the rcsulting equation which yields all rational solutions f(n)lS@), Therefore
computing the universal denominator is a key step for computing rational solutions (see
[2,3,141). Recall that the dispersion dis(a(n),b(r))of the polynomials a(n),b(n)e K[n] is the
greatest nonnegative infeger ft ( if i t exisfs) such that a(n) and b(n+ft) have a nontrivial
common div isor ,  i .e . ,

dis (o, b) = -a*{r e N I deg gcd( a(n),b(n + ,t)) > l}

I f  k  does not  ex is t  then we sct  d is(a,b)  = -1.  Abramov [3]  gave an a lgor i thm to compute a
universal  dcnominator  G(n)  for  (1,2) .  Def inc

L  = d i s ( p , , ( n - d ) , p ' ( n ) l = m a ^ { i e  N l d e g g c d ( p , 7  f u - d ) , p 6 ( r i + / r ) ) > 1 }  ( 1 . 3 )

- the 
crp l ic i r  formula for  Abramov's univcrsal  denominator  is
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G(n1 = gcd\f poln + L1lu,[p a @ - d)14

For more details about Abramov's universal denominator see [141.

The main result of this paper is the observation that if we express the rational functions in
terms of their reduced rational representations, then finding hypergeometric solutions
reduces to f ind ing polynomial  so lut ions.  Also we g ive an expl ic i t  formula for  a universal
denominator  of  the l inear  d i f ference equat ion (1.2) .

2" Gosper's Algorithm for Recurrences of Arbitrary Order

In this section we consider the problem of f inding hypergeometric solufions 2,, for the
recurrence (l. l) rvhere t, is a given hypergeometric term, provided that ps(ir) and p7@)
are nonzero constant .  I f ( l . l )  has a hypergeometr ic  so lut ion,  then the le f t  hand-s ide of ( l . l )
can be written as a rational function multiple of zn.Let y(n)= z,,f t,,. It follows that y(ir) is
a rational function of n. Substituting y(n)t, for z, in (l. l) results in

r=0 j=0

where r (n)  =tn+t l tn  is  a rat ional  funct ion of  l .  I {encc rve need to f ind rat ional  so lut ions of
(2.1) .

l, p, (n)' v(n + i) 'flri.n + i) = I,

and y(n)  in  equat ion (2.1)  be in

u (n )  f ( n \r \ n ) = ; ;  . ,  l ( n ) = - .
0 \n )  g \n )

Let ks be defined by

ko =dis(a(n - l ) ,b(n))= max{t  e N I  deggcd( a(n - I ) ,b(n+t) )  > r } .
Then

( k u  , k o  , )
g(/') lgcdl flutr+ j)'' .fIo@- j -t)'' l.

\r=o j4 )

Proof. Using y(r), defined in (2.2), in (2.1) gives

AII terms in this equation except the one with i  = 0 are divisible by g(n), so
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(2.r)

terms of their reduced rat ional

(2.2)

(2.3)

Theorem 2 .1 .  Le t  r (n \

representations:

(2.4)
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t=l j=0

similarty, looking at the term with i = d and substituting r - d for n, we find that

e@)l Pa@) firr- i l 'f io1'- 11'
j=t j=r

Shifting r bY I in (2.5) Yields
d + l  d

g(n +1) | po@) f lg(, + i  nb(.n+ i).
j=2 j= l

By muttiplying (2.5) and (2,7) it fo[ows that

for I > &. It follows that

(?.5)

(46)

(2.7)

, ,  d - l

s@) |  p  o@)2 '  f l  t ( ,  +  i )2 '  s (n+ d  I  l ) '  b (n ) ' f fb (n  +  i )z 'b (n  +  d) '
i - l

t = z

By induction we get that for ft ) I :

g(n) l  po@)2r- ' . . i f r '  so* D' ,  . ' f r 'n@+ i ) f i ,
i=k i=0

where the 7's are positive integers and the B's are defined by

l ' ' ,  j =o '1 " " ' k -2  1
B , = | ' o t '  i = k - t ' k ' " " d - l  |  

( 2 ' 8 )

l 2 * - r  
- i l - 4 ,  i  = d ' d  + 1 , ' . . , d  + k - 2 . )

Since K has characteristic zero, there is a large enough & such that

gcd(g(n),g(n +.r)) = l,

g@)l po(dzo-' 'ufr'u1n+ )Pi ,
j=0

for atl large enough t ' Analogously, from (2.6) we get

. L - 1  d + k - z  R .

e@)l Pa@)z^ 
'  

| I  a@- i -t)Pr '
j=0

for all farge enough l ' , where the p's are defined as in (2.8). Since ps(z) and pa(n) ue

constants. it follows that

r 9 8  -
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( a * * - z  ^  d+k -2  ^ \
gt,?) | gca[ 

H 
ur,+ iPi, lI otn- i -D', 

),

for all large enough &. By using the definition ofthe dispersion we obtain

,(,) t r.o[fr b(n + ifi,Ti", -, -ro'),

for k> ts. The rest of the proof follows when k goes to infinity in this equation and by the
definition of the dispersion.
tr

Now set

s(n) =r.o[frut, + flzi,fia@-, -r'') (2.e)

in equation (2.4). If equation (2.4) can be sslved lor f e K[n] then

f(n\

" 
-!f i 'n

is a hy"pergeometric solution of (l.l), otherwise no hypergeometric solution of (1.1) exists.

Algorithm 2.1.

INPUT : {-p,@)Y=oe K[z] such that p6(n) and pa@) are nonzero constant and

r(n)  e K(n)

suchthat  tn+t l ln  =r(n)  for  a l l  re  N.

OWPUT: a hypergeometric solution zn of (l,l) if it exists, otherwise 6'no hypergeometric
solution of (1,1) existst'.

(l) Decompose r(n) into af b where a,b are two relatively prime polynomials.

(2) Compute ,te as in (2.3).

(3) If to ) 0 then compute

s(n)=*u[ft,r, + i)zr ,fia@-i-r)"],
otherwise qfu) = l.
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(4) If equation (2.4) can be solved for f e K[n ] then return

no
hypergeometric solution of (1.1) exists",

xample 2.1. We want to find att hypergeometric solutions of

Zn = /n, otherwise return

22r+2 -Bzn+ l  -  zn  =  tn ,

a (n)
r \ n )  =  = ; - ,

D\n )

(2.10)

Thus

(2:.r0).

h e r e  a ( n )  = ( 4 n + 2 ) ( n 2  + Z l n + 3 0 ) ,  b ( n ) = ( n + 3 ) ( n 2  + l 9 a + 1 0 ) ,and  then  ko=0 .  F rom
9),

n)= nl  +19n+ 10. By (2.a) /(n) is a polynomial which sat isf ies

8(2n + t)(2n + 3) J @ + 2) -  |  6(Zn + l )(n + 4) t  @ + t)  _ (n + 3)(n + 4) f  (n)
= (n  +  3) (n  +  4 ) (n2  +  I  9n  +  l0 ) .

e  on f  y  po lynomia l  so lu t ion  o f  th is  equat ion  is  f  (n )  =  - (n  + l ) (n  +  2 ) .

Rational SolutiEns of Linear Difference Equations

rem 3.1. Let ;,(n) in equation (1.2) be defined as in equation (z.z) and let r be defined
in (1.3), then

f .  Using y(n), defined in (2.2), in (1.2) gives

. l d d

i=0 j=0 j=0
J ? I
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All terms in equation except the one with i = 0 are divisible by g(n) ' so

s@)l  po@)' l ls(w+ i '

Similarly, looking at the term with i = d and substituting n - d for n, we find that

d

e@) l  pa@- i l ' l I sb-  i ) '
r - l

Shifting n by I in (3.2) yields

d+ l

g(n  +  t )  |  po@ + l )  f [ g ( r  +  7 ) .

By multiplying (3.2) and (3.4) it foUows that

d

c @ ) l  p o | ) p s ( n + l )  l l e ( n  +  j ) 2 . g ( n + d + t ) '
j=2

By induction w.e get that for k > 1:

k- l  .  .  d+k- l

sfu)l Po@) flPo(, + i) ' '- '  f l  tt '  + ir i '
j=t j=k

where the 7's are positive integers. Since K has characteristic zero, there is a large enough

k such that

gcd(g(n), g(n + l)) = t,

k- l

s0)l po@) fLoo1..* i) ' '- '  ,
l = l

for all large enough k . Analogously, from (3.3) we get

k-l

s@)l  pa@-d) ' f i .ootn-d -  j ) ' ' - '  ,
j= l

for all large enough k, Therefore

-201 -

(3.2)

(3,4)

(3.3)
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for all large enough ft . The rest of the proof follows when k gees to infinity in this equation
and by the definif ion ofthe dispersion.
tr

Now set

(  t  z ,  . . )
g(n) = gcdl  po@)l Ip;w+ i )2 '"  ,pa(n- i l l Ipa@-d- i ) ' t - '  I

[ ] J H )

in equation (3.1). If equation (3.1) can be solved for f e K[n] then y(n)= f (n)/g(n) solves
(1.2), otherwise no rational solutlon of(1.2) exists.

Algorithm 3.1.
INPUT : noruzero polynomials po@), pa@).

OUTPUT : a polynomial S@).

(1) Compute t as in (1.3).

(2 ) l f  L20  thencompu te

(  t  z ,  . \
I

g(n)  = gcdl  po@)f Ipo l .n+ i )2 ' - '  ,pa(n- i l f Ipa@-a -  i ' ' - '  l ,
\, ;=l j=t )

otherwise g(n)=| .

o

Example 3.1. We want to find a rational solution of

(2n3 + I3n2 + 22n + 8) y (n + 3) - (2n3 + | ln2 + l8n + 9) y(n + 2)

+(2n3 +n2 -6r1y1r+l ) - (2n3 -n2-zn+l)y(r )=Q. 
(3 '5)

We have p o@) = -(n - l)(2n - l)(n + l), p a @) = (n + 4)(2n + l)(n + 2), then L = 2 and then

g(n) = (n - lXn + l)n. By (3.1), f (n) is a polynomial which satisfies

n(Zn + l)(n + 2)(n + l) f (n + 3) - n(2n + 3)(z + 3)(n + I) f (n + 2) + n(2n - 3)
' (n + 3)(n + 2) f (n + t) - (2n - l)(n + 3)(n + l)(n + 2) f (n) = 0.

The pofynom ial f (n) = Cn(2n- 3) is a solufion of this equafion. Thus y(D = 4 = C2:*t
c ( n )  n ' - l

is a rational solution of(3.5).
o
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