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Abstract

In this paper we present approaches to find m -
hypergeometric  solutions for anti-difference equations,
homogeneous linear recurrence equations with polynomial
coefficients, and non-homogeneous linear recurrence equations
with polynomial coefficients provided their leading and trailing
coefficients are constant.

Keywords : Gosper’s algorithm, hypergeometric solution, m -
hypergeometric solution.

1. Introduction

Let m denotes a positive integer, N be the set of natural numbers, k be
the field of characteristic zero, k(n) be the field of rational functions over
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K, K[n]be the ring of polynomials over k. We assume the result of any
gcd (greatest common divisor) computation in K[n] as being normalized
to a monic polynomial p, i.e., the leading coefficient of pbeing 1. Recall
that a non-zero term ¢, is called a hypergeometric term over K if there
exist a rational function r(n) e K(n) such that

tn+1
—=1r{n.

n

Gosper’s algorithm [3] (also see [4,6,7,9,11]) has been extensively
studied and widely used to prove hypergeometric identities. Given a
hypergeometric term t,, Gosper’s algorithm is a procedure to find a

hypergeometric term z, satisfying

~z, =t,, (1.1)

*E-mail:
hus6274@hotmail.com
iIf it exists, or confirm the nonexistence of any solution of (1.1). Gosper
showed that any rational function r(n) can be written in the following
form, called the Gosper representation:

r(n) :@c(nJrl)’
b(n) c(n)
where a,b and ¢ are polynomials over k and

ged(a(n),b(n+hy=1 forall heN.

PetkovSek [8] realized that the Gosper representation becomes unique,
which is called the Gosper- Petkovsek representation, or GP
representation, for short, if we further require that b,c are monic
polynomials such that

ged(a(n),c(n) =1,
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ged(b(n),c(n+1)) =1.

In the same paper, PetkovSek presents algorithm Hyper to find all
hypergeometric solutions of the recurrence

Z pi(n)-z,,; =0,

where p,(n), p,(n)...., p,(n) are given polynomials over k. In another paper,

Petkovsek [9] generalizes Gosper’s algorithm to find all hypergeometric
solutions of the recurrence

Zpi (n)'znn =1,, (12)

where t, IS a given hypergeometric term over kK and p,(n),p,(n) are
constant.

Recall that a non-zero term a, is called an m-hypergeometric over K
If there exist a rational function we K(n) such that

an+m — W(n)

n

If w(n) = f(%(n), where f(n),g(n) < K[n], then the function f(%(n) is called

the rational representation of w(n). If additionally ged( f(n),g(n)) =1 holds,

then f(”)g(n) is called the reduced rational representation of w(n). In [5],

Koepf extends Gosper’s algorithm to find m-hypergeometric solutions s,
of
S, —S, =a,, (1.3)

where a, IS a given m-hypergeometric term. In [10], Petkovsek and
Bruno give the following lemma:

Lemma 1.1. Let wn) be a non-zero rational function over k. Then
there exist a non-zero constant zek and monic polynomials a,b and ¢
over Kk such that
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__a(n)c(n+m)
w(n) =z () c(n) (1-4)

where

(i) oed(a(n),b(n+mh))=1 forall heN,
(i) ged(a(n),c(n) =1,
(i) ged(b(n),c(n+1)) =1.

The representation of w(n) in (1.4) such that (i), (ii) and (iii) hold is
called the m -Gosper-Petkovsek (in short: m GP) representation. The
m GP representation is unique (The proof of this statement is analogous
to the one given in [8] for the special case m=1). Petkovsek and Bruno
used Lemma 1.1 to describe an algorithm to find m -hypergeometric
solutions of the recurrence

Z pi (n) ’ Sn+im = O, (15)

where p,(n), p,(n)...., p,(n) are given polynomials over k. Their algorithm
reduces to algorithm Hyper when m=1.

The contents of this paper are as follows: In Section 2, we extend
Petkovsek’s [9] and Paule-Strehl’s [7] approaches for Gosper’s
algorithm to find m-hypergeometric solutions of the linear recurrence
(1.3). In Section 3, we generalize algorithm Hyper to find m -
hypergeometric solutions of the linear recurrence (1.5). Finally, In
Section 4, we show how to generalize Petkovsek’s approach [9] to find
m-hypergeometric solutions of the recurrence

Z P (n) “Spiim = Ay, (16)
where a, is a given m-hypergeometric term and p,(n), p,(d) are constant.
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2. Extension of Some Approaches of Gosper’s
Algorithm

In this section we extend Petkovsek’s approach [9] and Paule-Strehl’s
approach [7] to find m-hypergeometric solutions of (1.3).

2.1 Extension of Petkovsek’s Approach

In [9], PetkovSek give an approach for Gosper’s algorithm. In this
section we extend that approach to find m-hypergeometric solution for
the recurrence (1.3). To do this we give the following results:

Lemma 2.1. Let w be a rational function over k. Then there exist
polynomials a,b,c over kK such that
_a(n) c(n+m)
=00 o (2.1)
and

ged(a(n),b(n+mh)) =1 for all heN. (2.2)

Proof. The proof is analogous to the one given in [3] for the special
case m=1. O

The representation of w(n) in (2.1) such that (2.2) holds is called the m-
Gosper representation.

Lemma 2.2. Let a,b.c, A B,C eK[n] such that

ged(a(n), c(n)) = ged(b(n),c(n +m)) = ged( A(n), B(n+mh)) =1 for all heN.

a(n) c(n+m) _ A(n) C(n+m)
b(n) c(n)  B(n) C(n)

then c(n) divides c(n).
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Proof. The proof is analogous to the one given in [8] for the special case

m=1. O

Given an m-hypergeometric term a, and suppose that there exists an
m -hypergeometric solution s, satisfying equation (1.3). By using (1.3)
we get

_n 1
an S =S Sn+m -1

S

n

Let y(n)=%. It follows that y(n) is a rational function of n. Substituting

y(n)a, for s in
(1.3) to obtain
w(n)y(n+m)—y(n) =1, (2.3)

where w(n) = &nm /_isarational function of n. Let

ym =" (2.4)

and (2.4) into (2.3) to obtain

a(n) cn+m) _ (f(n)+g(n)) g(n+m)
b(n) c(n) f(n+m) g(n)
By Lemma 2.2, g(n) | c(n), SO c(n) is a suitable denominator for y(n).
Write y(n) =" Ay

where v(n) is an unknown polynomial, and substitute this together with
(2.1) into (2.3) to obtain
a(n)v(n+m) = (v(n)+c(n))b(n). This shows that b(n) divides v(n+m), hence we
have

b(n—m)x(n) | (2'5)

y(n) = o)

276



2007 iad (1) 2281 (12) sl & jeall o slall Apeanlsl] Alae

where x(n) is a polynomial in n. Substitution of (2.1) and (2.5) into (2.3)
shows that x(n) satisfies
a(n)x(n+m)—b(n—m)x(n) =c(n).

Now if such a polynomial solution x(n) e K[n] exists, then

s = b(n—m)x(n) a
c(n)
IS an m -hypergeometric solution of (1.3).

2.2 Extension of Paule-Strehl’s Approach

In [7], Paule and Strehl give an approach for Gosper’s algorithm. In this
section we extend that approach to find m-hypergeometric solution for
the recurrence (1.3). Given an m-hypergeometric term a, and suppose

that there exists an m -hypergeometric solution s, satisfying equation
(1.3). Let F(%(n) be the reduced rational representation of Swm ¢ - Then

n

s, can be written as
s, :&an. (2.6)
F(n)—G(n)
By using (2.6) we get
F(n) F(M+m)-G(n+m) (2 7)
G(n+m) FM)-G(n) '’ '

where w(n) = nn . Isarational function of n. The right hand side of (2.7)

n

w(n) =

Is very close to the m GP representation, but in general there is no
guarantee to have gd(F(n),G(n+mj)=1 for all j>1. To overcome this

problem consider the m GP representation for F"MZ .

F(n) _ A C(n+m) (2.8)
G(n+m) B(n) C(n) '
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say, for polynomials A B,c eK[n]. Write w(n) in an m GP representation as

w(n) = a(n) c(n+m)
" b(n) c(n)

Then (2.7) turns into a true GP representation, namely
a(n) c(n+m) _ A(n) C(n+m)(F(n+m)—-G(n+m))

b(n) c(n)  B(n) C(n)(F(n) —G(n)

Since the m GP representation is unique, we get
a(n)=A(n), b(n)=B(n),
and
¢(n) = C(N)(F (n) - G(n). (2.9)
Equation (2.9) can be rewritten as

G(n+m)C(h+m) B(n—m) G(n)C(n)

¢(m =AM B(n) B(n—m)

It follows that

B G(h+mcCh+m) - G(n)C(n)
c(n)=a(n) b(n) b(n—m) —b(n "y

which shows that x(n) = ¢(MC®) is a solution to the equation

b(n—m)
a(n)x(n+m) —b(n—m)x(n) =c(n).

Note that x(n) is a polynomial, since b(n—m)=B(n—m) divides G(n) by the
properties of the m GP representation applied to equation (2.8). Now if

such a polynomial solution x(n) e K[n] exists, then
b(n — m)x(n)
S, =—————a,
c(n)

(2.10)
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is the m-hypergeometric solution of (1.3), otherwise no m-
hypergeometric solution s, of (1.3) exists.

O

The following example is a generalization to the example given in
[5]:
Example 2.1. Let m be any positive integer and let a, =(n+m)(”+mj!.

m
Then

a n+2mn+2m
W(n)= n+m: .
a m n+m

n

Hence a(n)=n+2m, c(n)=n+m. The constant polynomial x()=1 is a

solution for the equation
(n+2m)x(n+m) —mx(n) =n+m.

Therefore, according to equation (2.10), sn:(n+m)(%j!

O

3. Generalization of the Algorithm Hyper

Let k, be a field of characteristic zero and k an extension field of k. In

this section we generalize the algorithm Hyper to find m -
hypergeometric solutions s, over k for the recurrence (1.5). We assume

that there exist algorithms for finding integer roots of polynomials over
kK and for factoring polynomials over K into irreducible factors over K.
Now we consider the second-order recurrence

p2 (n)sn+2m + pl(n)sm—m + pO (n)sn :O' (31)

Assume that s, is an m-hypergeometric solution of (3.1). Then there is a
rational function r(n) such that s, =R(n)s,. Substituting this into (3.1) we
obtain
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p, (MR(n+m)R(n) + p, (N)R(n) + p, (n) =0.

Write r(n) in m GP representation
a(n) c(n+m)

R =200 e

Then

2% p, (n)a(n + mya(n)c(n + 2m) + zp, (n)b(n +m)a(n)c(n + m) + p, (N)b(n + m)b(n)c(n) =0.
(3.2)

From this equation we immediately get that a() | p,(n) and that b(n) |

p,(n—m). We can cancel a(n)b(n+m) from the coefficients of (3.2) to
obtain

2 Py (N) Po (M) B
i a(n +mc(n + 2m) + zp, (N)c(n +m) + 2 b(n)c(n) =0. (3.3)

To determine the value of z, we consider the leading coefficient of the
left-hand side in (3.3) and find z that satisfies a quadratic equation with
known coefficients. So given the choice of a(n) and b(n), there are at
most two choices for z. When we choose a(n), b(n), and z, we can use
the algorithms in [1,2,8] to determine any non-zero polynomial solution
c(n) of (3.3). If yes, we have found an m-hypergeometric solution of
(3.1). If (3.3) has no non-zero polynomial solution for every choice of
a(n),b(ny and z , then (3.1) has no m -hypergeometric solution.

O

The above algorithm can be easily generalized to recurrences of
arbitrary order

Example 3.1. Let m=2 and let
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n-Ds. ., —(*+3n-2)s... +2n(n+1s_=0.
n+2 n

n+4

Then p,(n)=n-1, p,(n)=—(n? +3n-2), p,(n)=2n(n+1). The monic factors of
p,(mare 1, n, n+1 and n(n+1) and those of p,(n-2) are 1 and n-3.
Taking a(n)=b(n)=1 yields -z+2=0. The recurrence (3.3) is

2(n=De(n+4) — (n* +3n—2)c(n + 2) + n(n +)c(n) =0,

with polynomial solution c(n)=1. This gives R(ny=2 and s, =2" .
0

4. Generalization of PetkovSek’s Approach

In [9], Petkovsek generalized Gosper’s algorithm to find hypergeometric
solutions for the recurrence (12). In this section we generalize that
approach to find m-hypergeometric solutions s, for the recurrence (1.6).

Given an m-hypergeometric term a, and suppose that there exists an m-
hypergeometric solution s, of equation (1.6). Then the left hand-side of

(1.6) can be written as a rational function multiple of s,. Let y(n)=% :

n

Then y(n) is a rational function of n. Substituting y(n)a, for s, in (1.6) to
obtain

> p.(My(n+m] [wen+mj) =1 (4.1)

where w(n):a"+% Is a rational function of n. Hence the problem of

n

finding m-hypergeometric solutions of (1.6) is reduced to the problem of
finding rational solutions of (4.1). Write w(n) in m-Gosper representation
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_a(n) c(n+m)
and
__f(m
Y= (4.3)

where f(n) and g(n) are two unknown relatively prime polynomials.
Using (4.2) and (4.3) in (4.1) gives

Z p,(n)f(n+ mi)Hg(n + mj)ﬁa(n +mj) Hb(n + mj)

J#i

= c(n)f[ b(n+ mj)H g(n+mj),

(4.4)
All terms in (4.4) except the one with i=o are divisible by g(n), so
g | Py [g(+mp[To(n-+mi), (4.5)

Similarly, looking at the term with i=d and substituting n-md for n, we
find that

9(n) | py(n—md)] Jg(n—mj] Ja(n—mj) (4.6)

Using (4.5) and (4.6), and by the fact that p,(n) and p,(n) are constant,

one can show by induction that for every 1N, g(n) divides a product of
factors of the form g(n+mj) and b(n+mi) where mj>1 and mi=>o, as well as
a product of factors of the form g(n-mj) and a(n—mi) where mj>1 and
mi>1. Since K has characteristic zero, there is a large enough 1 such that
g(n) is relatively prime with g(n+mj) where mj>1 and for mj<-1. From
the properties of a(n) and b(n) it follows that g(n) is a constant. Therefore

we may write y(n) =9 {(ny Where q(n) is a polynomial satisfying
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> P+ mi)lj a(n+mp)[ [b(n-+mj) = (] To(n +mi) (4.7)

Looking at the term with i=d in (4.7) and substituting n-md for n, we
find that q(n) is divisible by bmn-m), so we seek ym) in the form

y(n) = b(”‘m)x(%n), where x(n) is
a polynomial satisfying

i p, (N)x(n+ mi)ﬁa(n + mj)ﬁb(n +mj) = c(n)ﬁb(n +mj) (4.8)

j=i-1 i=

Finding m-hypergeometric solutions of (1.6) is therefore equivalent to
finding polynomial solutions of (4.8). The relation between them is that
if x(n) is a polynomial solution of (4.8) then

s = b(n—m)x(n) a
c(n)

Is an m-hypergeometric solution of (1.6), and vice versa.
O

Algorithm 4.1.

INPUT @ {p,(n)}’, eK[n] such that p,(n) and p,(n) are constants and
w(n) < K(n) such that an+% —w(n) for all neN.

OUTPUT: an m-hypergeometric solution s, of (1.6) if it exists, otherwise

“no m-hypergeometric solution of (1.6) exists”.
(1) Compute the polynomials a(n),b(n) and c(n)eK[n] such that

w(n):mm Is an m-Gosper representation.
b(n) c(n)
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(2) If equation (4.8) can be solved for the polynomial x(n), then return
s, :Wam otherwise return “no m-hypergeometric solution of
(1.6) exists™. 0

Example 4.1. Let m=2 and let

B(Zn +8j11n4 +78n° +185n2 +174n +52

" 4n+4 ) 2n+D)@2n+3)(2n+5)2n+7)
Then
w(n) = a,, _a(n)c(n+2) |
a, b(n) c(n)
where

a(n) =4(2n+1)(2n +3),
b(n) = (n+5)(n+6),
c(n) =11n* +78n° +185n° +174n +52.

We want find all 2-hypergeometric solutions of
S,., —85,.,+4s, =a,. (4.9)
By (4.8), x(n) is a polynomial satisfies

16(2n+1)(2n+3)(2n+5)(2n + 7)x(n + 4) —32(2n +1)(2n + 3)(n + 5)(n + 6)x(n + 2)
+4(n+3)(n+4)(n+5)(n+6)x(n) = 11n* +78n° +185n* +174n +52)(n + 5)(n + 6).

Using the algorithm of [1,2,8] it can be shown that the only polynomial
solution of this equation is

x(n) = %(n +1)(n+2).

Therefore
s - b(n—2)x(n) Q- (ZnJ
c(n) n
iIs the only 2 -hypergeometric  solution  of (4.9).
O
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