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Abstract 

    This paper presents the application of nonpolynomial spline method for finding the 

numerical solution of singularly perturbed boundary value problems. Three numerical 

examples are considered to demonstrate the usefulness of the method and to show that the 

method converges with sufficient accuracy to the exact solutions. 
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1. Introduction 

    Singular perturbation problems containing a small perturbation parameter   , arise very 

frequently in many branches of applied mathematics such as, fluid dynamics, quantum 

mechanics, chemical reactor theory, elasticity, aerodynamics, and the other domain of the 

great world of fluid motion [1-3] . 

    A well known fact is that the solution of such problems has a multiscale  character ,i.e. 

there are thin transition layers where the solution varies very rapidly, while away from the 

layer the solution behaves regularly and varies slowly. Numerically, the presence of the 

perturbation parameter leads to difficulties when classical numerical techniques are used 

to solve such problems,  this is due to the presence of the boundary layers in these 

problems. We consider a second order singularly perturbed boundary problem[4-5]: 

                                 ( )    ( )   ( )     [   ]                                               (1) 

      with the boundary conditions  

                             ( )             ( )                                                                         (2) 

 where   is a small positive parameter      ,   and   are given constants,  ( ) , 
 ( ) and  ( ) are assumed to be sufficiently continuously differentiable functions. 

   The nonpolynomial spline method[6-12] developed in this paper has lower 

computational cost and its only requires solving     linear or non-linear equations. 

 

2.  Derivation of the Method 

   We divide the interval [   ] into     equal subintervals using the point       

 

                         

with 

                    
   

   
 

Where arbitrary positive integer.  

    Let  ( ) be the exact solution and       an approximation to  (  ) obtained by the non 
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polynomial     ( ) passing through the points (     ) and (         ), we do not only 

require that   ( )    satisfies interpolatory conditions at     and     but also the continuity 

of first derivative at the common nodes  (     )  are fulfilled . We write    ( )  in the form 

[7-8]:  

  ( )        (    )        (    )    (    )                           (3)  

where                 are constants and  τ  is free parameter to be determined later . 

    A non-polynomial function   ( ) of class   [   ] interpolates  ( )  at the grid points 

                      depends on a parameter    , and reduces to ordinary spline  ( ) 

in [   ] as      

   To derive expression for the coefficient of  Eq. ( ) in term                     and 

    ,we first define: 

   (  )            (    )           
 (  )        

 (    )          

                                                  
 (  )         

  
 (    )                                               (4) 

From algebraic manipulation, we get the following expression: 
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                                                     (5)      

where 𝜃     and               

  We applying the first derivative at (     ), that is       (  )   
 
 (  ) ,gives the 

following consistency relation for        : 
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                                                                                                                                            (6) 

 

which can further be written as , 

               
 [ (         )      ]                                      (7)                           

where 
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3. Truncation Error  

Now the corresponding truncation error associated with (6) 
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Applying Taylors theorem and simplify we get  

    (       )   
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                                                                                                                                             (8) 

4. Non-Polynomial Spline Solutions 

    In this section, a nonpolynomial spline approximation to equation(1), use   ( ) and 

    ( ) at the node    implies,  
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where               

Using equation (9) and (10) in equation (1) we get  

  (   
     𝜃

𝜃    𝜃
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𝜃    𝜃
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                                                                                                                                (12)                                                              

For             Addition of equation (11)and (12)we get the following equation: 
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 Elimination of     between equation (13)and equation(6) yields the following 

equation, 
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                                                                                                                                (14)  

An explicit expression can be obtained for        in terms      and    by eliminating 

   between equation (11) with   replaced by      and (12)  manly, 
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where 
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(16) 

Similarly      can be obtain in term of      and    from equation (11) and equation (12)  

with replaced by     the resulting expression being  
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for            where 
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   Where    and    are given by equation (16)and (17) and          and    are given 

the following: 
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for            

   Formula (19)   is counterpart of  formula (6) when the first derivative term is present . 

5. Numerical Results 

   We solve three singular perturbed problems using  different values of    and  . The 

numerical solutions are computed and compared with the exact solutions at grade points. 

All calculations are implemented by Maple 13. 

Example 1[13]: Consider the following equation with constant coefficients 

         ((    (  )         (   ))                                                 

 ( )   ( )     

the exact solution is given by 
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 ( )  

    ( 
   

√ 
     (   √ 

     ( 
 

√ 
)

     (  )  

the numerical result of the example are presented in table 1 and figure 1 for different 

values subinterval   and       . Figure 2 show the physical behavior of the numerical 

solutions for different values of   .  

Example 2[1]:Consider the following equation with variable coefficients: 

     (   (   ))     (   )  ( √    (   ))    ( 
   

√ 
)  ( √  

                                                          (   ) )   ( 
 

√ 
)  

The exact solution is given by: 

 ( )    (   )    ( 
 

√ 
)       ( 

   

√ 
) 

   The numerical result of the example are presented in table  2  and figure 3 for different 

values subinterval   and       . Figure 4 show the physical behavior of the numerical 

solutions for different values of   .  

Example 3[1]: Consider the following equation with variable coefficients 

            (     )    (  )  (  )   (  ) 

 (  )      ( )     

The exact solution is given by: 

                         ( )     (  )    
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√  
) √         ( 
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)
   

   The numerical result of the example are presented in table 3 and figure 5 for different 

values subinterval   and       . Figure 6 show the physical behavior of the numerical 

solutions for different values of   . 
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Table 1: Numerical solution of  Example 1 at different value of subintervals. 

 

 
 

  

 

                

    Exact Sol. N=16 N=32 N=64 N=128 

1/16 -0.1740613181 -0.1740535992 -0.1740522915 -0.1740517442 -0.1740519068 

2/16 -0.228908954 -0.2284334136 -0.2283165751 -0.2282870599 -0.2282776718 

3/16 -0.1911307967 

 

-0.1898286086 -0.1895029921 -0.1894212971 -0.1893944408 

4/16 -0.0929919425 -0.09063332439 -0.09004269872 -0.08989483097 -0.0898457280 

5/16 0.03086117788 0.03431676118 0.03518261484 0.03539918112 0.0354714190 

6/16 0.1474006708 0.1518063028 0.1529105397 0.1531865969 0.1532788852 

7/16 0.2293560424 0.2344040967 0.2356695326 0.2359858163 0.2360916672 

8/16 0.2587638902 0.2640387549 0.2653611037 0.2656915887 0.2658022288 

9/16 0.2293560426 0.2344040966 0.2356695325 0.2359858164 0.2360916672 

10/16 0.1474006708 0.1518063027 0.1529105395 0.1531865969 0.1532788852 

11/16 0.03086117786 0.03431676129 0.03518261487 0.03539918123 0.0354714190 

12/16 -0.09299194243 -0.09063332432 -0.09004269853 -0.08989483104 -0.0898457280 

13/16 -0.1911307968 -0.1898286086 -0.1895029920 -0.1894212969 -0.1893944408 

14/16 -0.2289028956 -0.2284334135 -0.2283165754 -0.2282870598 -0.2282776718 

15/16 -0.1740613181 -0.1740535993 -0.1740522913 -0.1740517437 -0.1740519068 
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Table 2: Numerical solution of  Example 2 at different value of subintervals. 

 

   

 

  

 

                

    Exact Sol. N=16 N=32 N=64 N=128 

1/16 0.2694507465 0.2686645346 0.2684693382   0.2684203316    0.2684044067 

2/16 0.4671405863 0.4659161991 0.4656121409 0.4655357779    0.4655109999 

3/16 0.6108517734 0.6094094686 0.6090511884 0.6089611707   0.6089320119 

4/16 0.7136795557 0.7121501159 0.7117700682 0.7116745389    0.7116436520 

5/16 0.7851097856 0.7835628984 0.7831783980 0.7830816983    0.7830504955 

6/16 0.8318053349 0.8302703669 0.8298887324 0.8297927183   0.8297617754 

7/16 0.8581620967 0.8566433164 0.8562656400 0.8561705976 0.8561399960 

8/16 0.8666777544 0.8651658059 0.8647898043 0.8646951755    0.8646647168 

9/16 0.8581620967 0.8566433163 0.8562656399 0.8561705979   0.8561399960 

10/16 0.8318053350 0.8302703669 0.8298887327 0.8297927184 0.8297617754 

11/16 0.7851097854 0.7835628984 0.7831783978 0.7830816986    0.7830504955 

12/16 0.7136795558 0.7121501157 0.7117700683 0.7116745385   0.7116436520 

13/16 0.6108517732 0.6094094688 0.6090511883 0.6089611705   0.6089320119 

14/16 0.4671405862 0.4659161995 0.4656121412 0.4655357776   0.4655109999 

15/16 0.2694507467 0.2686645349 0.2684693378 0.2684203316 0.2684044067 
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Table 3: Numerical solution of  Example 3 at different value of subintervals. 

 

  

 

  

 

                

    Exact Sol. N=64 N=128 N=512 N=1024 

-7/8 -0.9190258015 -0.9219199438 -0.9237709378 -0.9240415171 

 

-.9243033330 

-6/8 -0.6984560039 -0.7035617854 -0.7068294729 -0.7073106180 -.7077785740 

-5/8 -0.3722043319 -0.3783607642 -0.3822747958 --0.3828522232 

 

-.3834150957 

-4/8 0.009537748283 0.003855719211

3 

0.0003641358348 -0.0001416429488 -0.6318936e-3 

-3/8 0.3881155740 0.3845924696 0.3827696718 0.3825442896 0.3823396261 

-2/8 0.7079360848 0.7077704103 0.7085372990 0.7087543527 .7090026623 

-1/8 0.9384379783 0.9408096810 0.9435055183 0.9440534564 0.9446355666 

0 1.092840722 1.095498023 1.098469883 1.099075370 1.099715459 

1/8 1.188481264 1.190838603 1.193508694 1.194053107 1.194635567 

2/8 1.204935832 1.206883138 1.208472633 1.208735746 1.209002662 

3/8 1.131158356 1.132521790 1.132618238 1.132502994 1.132339626 

4/8 0.9998408258 1.000964472 1.000152356 0.9998016554 .9993681064 

5/8 0.8674062236 0.8685359797 0.8674978662 0.8670873438 0.8665849039 

6/8 0.7927591290 0.7938125624 0.7929781403 0.7926384601 .7922214264 

7/8 0.8258581569 0.8265503836 0.8261169714 0.8259288994 0.8256966672 
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Figure 1: Comparison of exact and numerical solutions of Example 1 for       . 
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Figure 2: Numerical behavior of numerical solutions of Example 1 at different values of 

 . 
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Figure 3: Comparison of exact and numerical solutions of example 2 for            
  . 

 

 
Figure 4: Numerical behavior of numerical solutions of Example 2 at different values of 

 . 
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Figure 5: Comparison of exact and numerical solutions of example 3 for       . 

 

 

 
Figure 6: Numerical behavior of numerical solutions of Example 3 at different values of 

 . 
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6. Conclusion 
  

   In this paper , a numerical technique for singularly perturbed boundary value problems 

using Nonpolynomial Spline functions is derived. Simplicity of the adaptation of 

Nonpolynomial Spline and obtaining acceptable solutions can be noted as advantages of 

given numerical methods. The method is tested on three problems and the results obtained 

are very encouraging. The method is simple and easy to apply. 
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