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Abstract

We give special values to the parameters in Goldman–Rota q-binomial
identity and its inverse to get some wellknown identities such as Cauchy
identities, Euler identity and Goulden and Jackson identity. We show
the equivalence between Goldman–Rota q-binomial identity and its in-
verse. Using the Cauchy operator, we give an operator proof for the
Goldman–Rota q-binomial identity and the exchange property of the
Cauchy polynomials.
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1. Introduction

In this paper we will follow the standard notations on q-series in [3, 6] and we
always assume that |q| < 1.

The q-shifted factorial is defined by:

(a; q)k =

{
1, if k = 0,
(1− a)(1− aq) · · · (1− aqk−1), if k = 1, 2, 3, · · · .

We also define

(a; q)∞ =
∞∏
k=0

(1− aqk).
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We shall adopt the following notation of multiple q-shifted factorials:

(a1, a2, · · · , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n.

The q-binomial coefficient is defined by:[
n

k

]
=


(q; q)n

(q; q)k(q; q)n−k
, if 0 6 k 6 n,

0, otherwise.
(1.1)

When n→∞ in (1.1), we get

lim
n→∞

[
n

k

]
=

1

(q; q)k
.

The inverse pair is given by [8]:

an =
n∑

k=0

[
n

k

]
bk, for n > 0,

bn =
n∑

k=0

[
n

k

]
(−1)kq(k

2)an−k, for n > 0.

One of the most wellknown identities in q-series is Cauchy identity

∞∑
n=0

(a; q)n
(q; q)n

xn =
(ax; q)∞
(x; q)∞

. (1.2)

The Cauchy polynomials is defined by

Pn(x, y) = (x− y)(x− qy)(x− q2y) · · · (x− qn−1y)

= (y/x; q)nx
n. (1.3)

The homogeneous version of the Cauchy identity (the generating function of
Pn(x, y)) is given by

∞∑
n=0

Pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

. (1.4)

Setting y = 0 in (1.4), we get Euler’s identity:

∞∑
n=0

(xt)n

(q; q)n
=

1

(xt; q)∞
, |xt| < 1. (1.5)

The Cauchy polynomials Pn(x, y) was studied by Andrews [1, 2], Goldman and
Rota [7], Goulden and Jackson [8] and Roman [9].
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In 1970, Goldman and Rota [7] have shown the q-binomial identity

Pn(x, y) =
n∑

k=0

[
n

k

]
Pk(x, z)Pn−k(z, y). (1.6)

Setting z = 0 in (1.6), one obtains the following identity:

Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)ykxn−k. (1.7)

Goldman and Rota, by Möbius inversion, obtain the following identity:

Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)Pn−k(x, qk). (1.8)

In 1983, Goulden and Jackson [8] gave the following exchange property of
Pn(x, y):

n∑
k=0

[
n

k

]
Pk(x, y)Pn−k(w, z) =

n∑
k=0

[
n

k

]
Pk(x, z)Pn−k(w, y). (1.9)

Setting w = z, the exchange property of Pn(x, y) becomes the q-binomial
identity (1.6). Also, they have found the following basic relations:

Pn(qn−1y, x) = (−1)nq(n
2)Pn(x, y). (1.10)

Pk(qn−1y, qn−1) = q(n−1)kPk(y, 1).

Pn−k(qn−1, x) = (−1)n−kq(n
2)+(k

2)+k−nkPn−k(x, qk).

They used these relations to give a derivation of the inverse Goldman-Rota
q-binomial identity (1.8) from Goldman-Rota q-binomial identity (1.6).

In 2003, Chen et al. [5] have found the following relations:

Pn(x, y) = (−1)nq(n
2)Pn(y, q1−nx), (1.11)

Pn−k(x, q1−ny) = (−1)n−kq(k
2)−(n

2)Pn−k(y, qkx). (1.12)

They used these relations to give a similar derivation of (1.8) from (1.6). Also,
they introduced the homogeneous Rogers-Szegö polynomials defined by:

hn(x, y|q) =
n∑

k=0

[
n

k

]
Pk(x, y). (1.13)
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In 2010, Saad and Sukhi [10] used (1.11) and (1.12) to derive (1.6) from
(1.8). Also, they gave the following new formula for the homogeneous Rogers-
Szegö polynomials hn(x, y|q):

hn(x, y|q) =
n∑

k=0

[
n

k

]
(y; q)kx

n−k. (1.14)

This paper is organized as follows. In Section 2, we give special values
to the parameters in Goldman–Rota q-binomial identity (1.6) and its inverse
(1.8) to get some wellknown identities. In Section 3, we show the equivalence
between Goldman–Rota q-binomial identity (1.6) and its inverse (1.8). Finally,
in Section 4, we give an operator proof for the Goldman–Rota q-binomial
identity (1.6) and the exchange property of the Cauchy polynomials (1.9).

2. Special Values

We give special values to the parameters in Goldman–Rota q-binomial identity
(1.6) and its inverse (1.8) to get some wellknown identities.

• Setting x→ 1

x
, y → 1

y
and z → 1

z
in (1.6) to obtain

(x/y; q)n =
n∑

k=0

[
n

k

]
(x/z; q)n−k(z/y; q)k

(x
z

)k
. (2.1)

When n→∞ in (2.1), we get

(x/y; q)∞
(x/z; q)∞

=
∞∑
k=0

(z/y; q)k
(q; q)k

(x
z

)k
(2.2)

Setting z/y → a and x/z → x in (2.2), we get Cauchy identity (1.2).

• Setting y = 0 and x→ 1/x in (1.8), we get

1 =
n∑

k=0

[
n

k

]
qk

2−k(qkx; q)n−kx
k

=
n∑

k=0

[
n

k

]
qk

2−k (x; q)n
(x; q)k

xk. (2.3)

When n→∞ in (2.3), we get

∞∑
k=0

qk
2−kxk

(q, x; q)k
=

1

(x; q)∞
. (2.4)

Equation (2.4) is due to Cauchy.
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• Setting x = 0 and then y → x in (1.8), we get

xn =
n∑

k=0

[
n

k

]
Pk(x, 1). (2.5)

Identity (2.5) is due to Cauchy. Setting x→ 1/x in (2.5), we get

1 =
n∑

k=0

[
n

k

]
(x; q)n−kx

k. (2.6)

When n→∞ in (2.6), we get Euler identity (1.5).

• Setting y = 1 in (1.13) and by using (2.5), we get

hn(x, 1|q) = xn. (2.7)

By the inverse pair on (1.13), we get

Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)hn−k(x, y|q). (2.8)

Setting y = 1 in (2.8) and by using (2.7), we get

n−1∏
i=0

(x− qi) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)xn−k. (2.9)

Identity (2.9) is given by Goulden and Jackson [8].

3. The Goldman-Rota identities

In this section, we show the equivalence between Goldman–Rota q-binomial
identity (1.6) and its inverse (1.8). We have found the following basic relations
for the Cauchy polynomials Pn(x, y) which are easy to verify:

Pk(qn−1x, qn−1y) = q(n−1)kPk(x, y). (3.1)

Pn−k(qn−1y, x) = (−1)n−kq(n
2)+(k

2)+k−nkPn−k(x, qky). (3.2)

From (3.1) and (3.2), we get the following relation:

Pn−k(1, x) = (−1)n−kq−(n
2)+(k

2)Pn−k(qn−1x, qk). (3.3)
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Theorem 3.1. We have

Pn(xy, 1) =
n∑

k=0

[
n

k

]
xn−kPk(x, 1)Pn−k(y, 1). (3.4)

=
n∑

k=0

[
n

k

]
ykPk(x, 1)Pn−k(y, 1). (3.5)

Proof. By the homogeneous version of the Cauchy identity (1.4), we find

(t; q)∞
(xyt; q)∞

=
(t; q)∞

(xt; q)∞

(xt; q)∞
(xyt; q)∞

∞∑
n=0

Pn(xy, 1)
tn

(q; q)n
=

∞∑
n=0

tn

(q; q)n

n∑
k=0

[
n

k

]
Pk(x, 1)Pn−k(xy, x)

=
∞∑
n=0

tn

(q; q)n

n∑
k=0

[
n

k

]
xn−kPk(x, 1)Pn−k(y, 1).

By comparing coefficients of tn in the above equation, we get (3.4).
Again, by the homogeneous version of the Cauchy identity (1.4), we find

(t; q)∞
(xyt; q)∞

=
(t; q)∞
(yt; q)∞

(yt; q)∞
(xyt; q)∞

∞∑
n=0

Pn(xy, 1)
tn

(q; q)n
=

∞∑
n=0

tn

(q; q)n

n∑
k=0

[
n

k

]
Pk(y, 1)Pn−k(xy, y)

=
∞∑
n=0

tn

(q; q)n

n∑
k=0

[
n

k

]
ykPk(x, 1)Pn−k(y, 1).

By comparing coefficients of tn in the above equation, we get (3.5).

Setting x→ 1/x and y → 1/y in (3.4) and (3.5), we get

Pn(1, xy) =
n∑

k=0

[
n

k

]
ykPk(1, x)Pn−k(1, y).

=
n∑

k=0

[
n

k

]
xn−kPk(1, x)Pn−k(1, y). (3.6)

Theorem 3.2. The following statements are equivalent:

1. Pn(x, y) =
n∑

k=0

[
n

k

]
Pk(x, z)Pn−k(z, y).
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2. Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)Pn−k(x, qk).

3. Pn(xy, 1) =
n∑

k=0

[
n

k

]
xn−kPk(x, 1)Pn−k(y, 1).

4. Pn(1, xy) =
n∑

k=0

[
n

k

]
xn−kPk(1, x)Pn−k(1, y).

Proof. 1 =⇒ 2

Pn(y, x) =
n∑

k=0

[
n

k

]
Pk(y, 1)Pn−k(1, x) (by using (1.6))

= (−1)nq−(n
2)

n∑
k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)Pn−k(qn−1x, qk) (by using (3.3))

Pn(qn−1x, y) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)Pn−k(qn−1x, qk) (by using (1.10))

Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)Pn−k(x, qk). (by setting x→ q1−nx).

2 =⇒ 3

Let x→ 1/x in (1.8), we get

Pn(1, xy)

xn
=

n∑
k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)
Pn−k(1, qkx)

xn−k .

Pn(qn−1xy, 1) = (−1)nq(n
2)

n∑
k=0

[
n

k

]
(−1)kq(k

2)xkPk(y, 1)Pn−k(1, qkx) (by using (1.10))

=
n∑

k=0

[
n

k

]
xkPk(y, 1)q−k+nkPn−k(qn−1x, 1) (by using (3.2))

Pn(xy, 1) =
n∑

k=0

[
n

k

]
xkPk(y, 1)Pn−k(x, 1) (by setting x→ q1−nx)

Pn(xy, 1) =
n∑

k=0

[
n

k

]
xn−kPk(x, 1)Pn−k(y, 1).

3 =⇒ 4
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Let x→ 1/y, y → 1/x in (3.4), we get

Pn(1, xy)

xnyn
=

n∑
k=0

[
n

k

]
1

yn−k
Pk(1, y)

yk
Pn−k(1, x)

xn−k

Pn(1, xy) =
n∑

k=0

[
n

k

]
xkPk(1, y)Pn−k(1, x)

=
n∑

k=0

[
n

k

]
xn−kPk(1, x)Pn−k(1, y).

4 =⇒ 1
Let x = 1/y, y = x in (3.6), we get

Pn(y, x)

yn
=

n∑
k=0

[
n

k

]
1

yn−k
Pk(y, 1)

yk
Pn−k(1, x)

Pn(y, x) =
n∑

k=0

[
n

k

]
Pk(y, 1)Pn−k(1, x)

=
n∑

k=0

[
n

k

]
Pk(y, 1)(−1)n−kq(k

2)−(n
2)Pn−k(qn−1x, qk) (by using (3.3))

Pn(y, q1−nx) = (−1)nq−(n
2)

n∑
k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)Pn−k(x, qk) (by setting x→ q1−nx)

Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(k

2)Pk(y, 1)Pn−k(x, qk). (by using (1.11))

Theorem 3.2 shows the equivalence between Goldman-Rota q-binomial
identity (1.6) and its inverse (1.8).

4. The Cauchy operator and the Cauchy poly-

nomials

In this section, we use Cauchy operator to give an operator proof for the
Goldman–Rota q-binomial identity (1.6) and the exchange property of the
Cauchy polynomials (1.9).

The q-differential operator, or q-derivative, Dq is defined by:

Dq{f(a)} =
f(a)− f(aq)

a
.
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In 2008, Chen and Gu [4] defined the Cauchy operator as follows:

T(a, b;Dq) =
∞∑
n=0

(a; q)n
(q; q)n

(bDq)
n.

The following lemma is easy to verify.

Lemma 4.1. We have

Dk
q {xn} =

(q; q)n
(q; q)n−k

xn−k.

Dk
q {Pn(x, y)} =

(q; q)n
(q; q)n−k

Pn−k(x, y).

T(a, b,Dq) {xn} =
n∑

k=0

[
n

k

]
(a; q)kb

kxn−k. (4.1)

T(a, b,Dq) {Pn(x, y)} =
n∑

k=0

[
n

k

]
(a; q)kb

kPn−k(x, y). (4.2)[
n

k

][
n− k

i

]
=

[
n

i

][
n− i

k

]
. (4.3)

Corollary 4.1.1. We have

T(y/z, z,Dq) {xn} = znhn(
x

z
,
y

z
|q). (4.4)

Proof. by using (4.1), we get

T(y/z, z,Dq) {xn} =
n∑

k=0

[
n

k

]
(y/z; q)kz

kxn−k

= zn
n∑

k=0

[
n

k

]
(y/z; q)k

(x
z

)n−k
= znhn(

x

z
,
y

z
|q). (by using (1.14))

Now we are ready to give an operator proof for the Goldman–Rota q-
binomial identity (1.6) and the exchange property of Pn(x, y) (1.9).
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Proof of (1.6). By using (4.2), we get

T(y/z, z,Dq) {Pn(x, z)} =
n∑

k=0

[
n

k

]
(y/z; q)kz

kPn−k(x, z)

=
n∑

k=0

[
n

k

]
Pk(z, y)Pn−k(x, z) (by using (1.3))

=
n∑

k=0

[
n

k

]
Pk(x, z)Pn−k(z, y). (4.5)

T(y/z, z,Dq) {Pn(x, z)} =
n∑

k=0

[
n

k

]
(−1)kq(k

2)zkT(y/z, z,Dq)
{
xn−k} (by using (1.7))

= zn
n∑

k=0

[
n

k

]
(−1)kq(k

2)hn−k(
x

z
,
y

z
|q) (by using (4.4))

= znPn(
x

z
,
y

z
) (by using (2.8))

= Pn(x, y). (4.6)

From (4.5) and (4.6), we get (1.6).

Proof of (1.9). By using (4.2), we get

T(z/w,w,Dq) {Pn(x, y)} =
n∑

k=0

[
n

k

]
(z/w; q)kw

kPn−k(x, y)

=
n∑

k=0

[
n

k

]
Pk(w, z)Pn−k(x, y) (by using (1.3))

=
n∑

k=0

[
n

k

]
Pk(x, y)Pn−k(w, z). (4.7)
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T(z/w,w,Dq) {Pn(x, y)} =
n∑

k=0

[
n

k

]
(−1)kq(k

2)ykT(z/w,w,Dq)
{
xn−k} (by using (1.7))

=
n∑

k=0

[
n

k

]
(−1)kq(k

2)ykwn−khn−k(
x

w
,
z

w
|q) (by using (4.4))

=
n∑

k=0

n−k∑
i=0

[
n

k

][
n− k

i

]
(−1)kq(k

2)ykwn−i−kPi(x, z)

=
n∑

i=0

[
n

i

]
Pi(x, z)

n−i∑
k=0

[
n− i

k

]
(−1)kq(k

2)ykwn−i−k (by using (4.3))

=
n∑

i=0

[
n

i

]
Pi(x, z)Pn−i(w, y). (by using (1.7)) (4.8)

From (4.7) and (4.8), we get (1.9).
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