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Abstract 

 
         In this paper, we study Gosper's algorithm where we use Petkovšek’s technique to 
give a derivation for Gosper’s algorithm. We show that the least common multiplier can be 
used to give two simpler algebraically motivated approaches to find hypergeometric 
solutions of linear recurrences with the additional restriction that the leading and trailing 
coefficients are constant.  In the second approach we use the universal denominator idea. 
The main result of these approaches that finding hypergeometric solutions reduces to 
finding polynomial solutions.  
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1. Introduction 
 
                Let N  be the set of nonnegative 
integers, K  be a field of characteristic zero, 

)(nK  be the field of rational functions over K , 
][nK  be the ring of polynomials over K , 

deg( p ) denotes the polynomial degree in n of 
any ][nKp∈ , lc ))(( np  be the leading 
coefficient of any ][nKp∈ , E  be the shift 
operator on ][nK , i.e. ( ) )1()( += npnEp  for 
any ][nKp∈ , lcm be the least common 
multiplier for polynomials, gcd  be the greatest 
common divisor for polynomials. As usual, we 

assume that subject to normalization the gcd of 
two polynomials always takes a value as a 
monic polynomial, namely, polynomials with 
the leading coefficient being1.  
         

        A nonzero term nt  is called a 

hypergeometric term over K  if the consecutive 

term ratio  

).(1 nr
t

t
n

n =+  
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is a rational function. If )(/)()( nbnanr = , 

where ][)(),( nKnbna ∈  then the function 

)(/)( nbna  is called a rational representation 

of the rational function )(nr . 

        Gosper's algorithm belongs to the standard 

methods implemented in most computer 

algebra systems. It has been extensively studied 

and widely used to verify hypergeometric 

identities, see [Chen et al (2005), Chen et al 

(2008), Gerhard(1998), Gosper (1978), 

Koepf(1998),                      Milekoric(2005), 

Koepf(1996), Lisoněk(1994), Qing-Hu 

Hou(2004)]. Now we give a historical survey of 

Gosper’s algorithm and hypergeometric 

solutions.  [Gosper (1978)] clarified that any 

rational function )(nr  can be written in the 

following form, called Gosper representation 

  
)(

)1(
)(
)()(

nc
nc

nb
nanr +

= ,                      (1.1) 

where ba,  and c  are  polynomials over K  and  

                                       

( ) 1)(),(gcd =+ hnbna  for all nonnegative integer 

h .           (1.2)  

          [Petkovšek (1992)] perceives that the 

Gosper representation becomes unique 

which is called the Gosper- Petkovšek 

representation or GP representation, for 

abbreviate, If  b  and c  are monic 

polynomials such that 

           ( ) 1)(),(gcd =ncna , 

( ) 1)1(),(gcd =+ncnb . 

                  [Petkovšek (1992)] derived the 

algorithm Hyper to find all hypergeometric 

solutions of the recurrence 

        0)(
0

=⋅ +
=
∑ in

d

i
i znp , 

where ][)()(),...,(),( 10 nKnpnpnpnp d ∈=  are 

given polynomials. The algorithm Hyper can be 

used to find all hypergeometric solutions of  the 

recurrence  

nin

d

i
i tznp =⋅ +

=
∑ )(

0
,              (1.3) 

where nt  is  given hypergeometric term such 

that )()(0 npandnp d are constants.          

[Petkovšek (1994)] gave a derivation for 

Gosper's algorithm and a derivation to find all 

hypergeometric solutions of the recurrence 

(1.3) with the additional restriction that 

)()(0 npandnp d  are constants. [Chen and 

Saad(2005)] presented a simplified version for 

Gosper's algorithm by using GP representation 

which is similar to the version of Paule and 

Strehl. They found all hypergeometric solutions 

of (1.3) such that )()(0 npandnp d  are 

constants.  

        Many approaches, even ours, for 

generalizing Gosper's algorithm can be reduced 

to find rational solutions. So in this paper we 

need to mention to the rational solutions )(ny  

for the linear difference equation  
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    )()()(
0

npinynp
d

i
i =+∑

=
,                (1.4) 

where K[n])(),(),...,(),( 10 ∈npnpnpnp d   are 

given polynomials such that )(0 np and

0)( ≠npd . A polynomial ][)( nKng ∈  is 

called  universal denominator for (1.4) if for 

every solution )()( nKny ∈  for (1.4) there exists 

][)( nKnf ∈  such that )(/)()( ngnfny = . In 

order to find rational solutions of (1.4), first we 

need to find the universal denominator for the 

equation (1.4) and then find the polynomial 

solution of the resulting equation.  

         [Chen et al (2008)] found a convergence 

property for the gcd of the raising factorial and 

falling factorial. Based on this property, they 

presented an approach to compute the universal 

denominator that appears in Gosper's algorithm. 

They found all hypergeometric solutions of the 

recurrence (1.3),[Paule(1995)]. 

        The dispersion dis ))(),(( nbna  of the 

polynomials ][)(),( nKnbna ∈  is the greatest 

nonnegative integer k  (if it exists) such that 

)(na  and )( knb +  have nontrivial common 

divisor, i.e., 

dis =),( ba max{ }1))(),(gcd(deg: ≥+∈ knbnaNk . 

If  k  does not exist then we set dis 1),( −=ba ,[Petkovšek et al (1996), Paule et al(1995),]. 

 

2. A derivation of Gosper's Algorithm  

              [Petkovšek (1994)]  presented a 

derivation to find hypergeometric solutions of 

the linear recurrence (1.3) with the additional 

restriction that the leading and trailing 

coefficients are constant. In this section, we use 

Petkovšek’s technique to give a derivation for 

Gosper’s algorithm.  

      Given a hypergeometric term nt  and 

suppose that there exists a hypergeometric 

solution nz   

satisfying   

nnn tzz =−+1 .                                        (2.1) 

Let nn tzny /)( = . By using (2.1) we get  

1

1)(
11 −

=
−

==
++

n

nnn

n

n

n

z
zzz

z
t
zny .  

Hence ( )ny  is unknown rational function of 

n . Substitute ( ) ntny  instead of nz  in (2.1), 

we obtain 

  ( ) ( ) ( ) 11 =−+ nynynr ,                         (2.2) 

where ( ) nn ttnr /1+=  is a rational function of 

n . Thus the problem of finding hypergeometric 

solution of (2.1) is reduced to the problem of 

finding rational solution of (2.2). Let us express 

)(nr in terms of their Gosper representation as 

in (1.1).  Let  
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=ok dis max))(),1(( =− nbna ( ){ }1)(),1(gcddeg: ≥+−∈ knbnak N ,       (2.3) 

and 

( )
)()(

)(
ncng

nfny = , 

such that ( ) 1)(),(gcd =ngnf . Substitute this together with (1.1) into (2.2), we get 

)1()()()()1()()()1()()( +=+−+ ngngncnbngnfnbnfngna . 

From this equation we get  

)1()(|)( +ngnbng         and      )1()1(|)( −− ngnang . 

Using these two relations repeatedly, we obtain 

                                         )()1()...1()(|)( kngknbnbnbng +−++ ,     

)()()...2()1(|)( kngknananang −−−− , 

for large enough k .  Since K  has characteristic 

zero then   

   

( ) ( ) 1)(),(gcd)(),(gcd =−=+ kngngkngng
, 

for all large enough k . It follows that    

)1()...1()(|)( −++ knbnbnbng , 

)()...2()1(|)( knananang −−− , 

for all large enough k . Therefore 

. 
( ))1()...1()(),()...2()1(gcd|)( −++−−− knbnbnbknananang

 

When k  goes to infinity we find  

( ))()...1()(),()...2()1(gcd|)( oo knbnbnbknananang ++−−−
. 

Since ( ) 1)(),(gcd =+ hnbna  Nh∈∀ , it 

follows that )(ng  is a  constant. Then we can 

write )(/)()( ncnqny = , where )(nq  is 

unknown polynomial. Substitute (1.1) and 

)(/)()( ncnqny =  into (2.2) gives 

( ))()()()1()( ncnqnbnqna +=+ .        (2.4) 

This shows that )(nb  divides )1( +nq . Let 

)1(/)()( −= nbnqnx  and substitute this in 

(2.4) to obtain  

)()()1()1()( ncnxnbnxna =−−+ .   (2.5) 

Therefore finding hypergeometric solutions of 

(2.1) is equivalent to finding polynomial 

solutions of (2.5). The correspondence between 

them is that if )(nx  is a nonzero polynomial 

solution of (2.5) then  

nn t
nc

nxnbz
)(

)()1( −
= ,                              (2.6) 

is a hypergeometric solution of (2.1), and vice 

versa.                                                                            
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Example 2.1.  Let  ( )!1

!
2
1

+

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

n
ntn . Note that 

( )
( )

)(
)1(

)(
)(1

2
2
1

)( 1

nc
nc

nb
na

n
n

n

n

t
tnr

n

n +
=

+
+

⎟
⎠
⎞

⎜
⎝
⎛ +

== + . 

Hence nncnnbnna =+=+= )(,2)(,
2
1)( . 

From equation (2.5) we find 

nnxnnxn =+−++ )()1()1()
2
1( . 

The polynomial )1(2)( += nnx  is a solution 

to this equation. Therefore, by (2.6) we obtain 

!

!
2
1

)1(2
n

n
nzn

⎟
⎠
⎞

⎜
⎝
⎛ −

+= .  

 
 

 

3. Hypergeometric Solutions for Recurrences 

of Arbitrary Order  

              In this section we give an approach to 

find the hypergeometric solutions of the linear 

recurrence (1.3) with the additional restriction 

that the leading and trailing coefficients are 

constant. Given a hypergeometric term nt  and 

the polynomials )(),...,(),( 1 npnpnp do  with 

the additional constraints that )(0 np  and 

)(npd  are constant. Suppose that there exists a 

hypergeometric solution nz  of (1.3). Let 

nn tzny /)( = , by using (1.3) we get

∏∑∑∑
−

= +

++

==

+

=
+

====
1

0

1

000
)(

1

)(

1

)(
)(

i

j jn

jnd

i
i

d

i n

in
i

d

i
ini

n

n

n

z
z

np
z

znpznp

z
t
zny

 

Since 
jn

jn

z
z

+

++ 1  is a rational function

1,...,1,0 −=∀ ij , it follows that )(ny  is 

unknown rational function of n . Substituting 

ntny )(  for nz  in (1.3), we get 

1)()()(
0

1

0
=++∑ ∏

=

−

=

d

i

i

j
i jnrinynp ,    (3.1) 

where nn ttnr /)( 1+=  is a rational function of 

n , then the problem of finding hypergeometric 

solution of (1.3) is reduced to the problem of 

finding rational solutions of (3.1). Let us 

express )(nr  in terms of their Gosper 

representation as in (1.1). Let 

)()(
)()(
ncng

nfny =  such that 

( ) 1)(),(gcd =ngnf . Substitute this together 

with (1.1) into  (3.1), we obtain 

1
)()(

)1()(
)()(

)()(
0

1

0
=

++
+++

++
+

∑ ∏
=

−

=

d

i

i

j
i jncjnb

jncjna
incing

infnp

. 

Multiplying this equation by ∏
−

= +
+1

)(
)(d

ij jnb
jnb

, we 

obtain 
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∏∑ ∏∏
−

==

−

=

−

=
+=++

+
+ 1

00

11

0
)()()()(

)(
)()(

d

j

d

i

d

ij

i

j
i jnbncjnbjna

ing
infnp

        
(3.2) 

 

Letting                        

  ( ))(),...,2(),1(lcm)( dngngngnl +++= , (3.3) 

and multiplying equation (3.2) by )()( ngnl , 

we obtain 

.)()()()()()()(
)(

)()()(
1

00

11

0
∏∑ ∏∏
−

==

−

=

−

=
+=++

+
+

d

j

d

i

d

ij

i

j
i jnbngnlncngjnbjna

ing
nlinfnp  

Form (3.3), we have the following divisibility conditions 

)(|)( nling +   for di ,...,2,1= . 

Thus )(/)( ingnl +  are polynomial for di ,...,2,1= . From the above equation we obtain 

( ))(),...,2(),1(lcm)()(|)(
1

0
dngngngjnbnpng

d

j
++++∏

−

=
o

.      (3.4) 

Similarly, multiplying equation (3.2) by )()1( dngnl +−  and then substituting dn −  for n , we 

obtain that 

                        ( ))(),...,2(),1(lcm)()(|)(
1

dngngngjnadnpng
d

j
d −−−−− ∏

=

,             (3.5) 

shifting n  by 1  in (3.4) yields 

( ))1(),...,3(),2(lcm)()1(|)1(
1

+++++++ ∏
=

dngngngjnbnpng
d

j
o , 

substituting  this equation in (3.4) we see that )(ng  divides 

( )

))(),...,2(,

)1(),...,3(),2(lcm)()1((lcm)()(
1

1

0
0

dngng

dngngngjnbnpjnbnp
d

j

d

j

++

+++++++ ∏∏
=

−

=
o

 

So we can write 

( ))1(),...,3(),2(lcm)()()1()(|)(
1

1

0
+++++++ ∏∏

=

−

=
dngngngjnbjnbnpnpng

d

j

d

j
oo . 

By induction we may get for 1≥k  
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)).1(,...,

)1(),((lcm)(...)()()(|)(
2

11

1

0

1

0
0

−++

+++++++ ∏∏∏∏
−+

−==

−

=

−

=

dkng

kngkngjnbjnbjnbjnpng
dk

kj

d

j

d

j

k

j  

It follows that 

)1()...1()()()(|)(
1

0

11

0
0 −++++⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ ∏ ∏∏

−

=

−+

=

−

=
dkngkngkngjnbjnpng

k

i

id

ij

k

j
. 

Since K  has characteristic zero, then for large enough k  

                                                ( ) 1)(),(gcd =+ jngng     for kj ≥ . 

 It follow that 

                                            ∏ ∏∏
−

=

−+

=

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

1

0

11

0
0 )()(|)(

k

i

id

ij

k

j
jnbjnpng ,     

for large enough k . Analogously form (3.5) we can get 

∏ ∏∏
−

=

+

+=

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

1

0 1

1

0
)()(|)(

k

i

id

ij

k

j
d jnajdnpng ,    

for large enough k . By assumption )(0 np and )(npd  are constant. Therefore 

     ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ∏ ∏∏ ∏

−

=

−+

=

−

=

+

+=

1

0

11

0 1
)(,)(gcd|)(

k

i

id

ij

k

i

id

ij
jnbjnang . 

When k  goes to infinity, we obtain 

     ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ ∏ ∏∏ ∏

=

−+

==

+

+=

oo k

i

id

ij

k

i

id

ij
jnbjnang

0

1

0 1
)(,)(gcd|)( . 

Since ( ) Nhhnbna ∈∀=+ 1(),(gcd ,  it follows that )(ng  is a constant. Then we can write            

   )(/)()( ncnqny = ,                                                          (3.6) 

where )(nq  is unknown polynomial. Inserting (1.1) and (3.6) into (3.1) gives 

∏∏∏∑
−

=

−

=

−

==
+=+++

1

0

11

00
)()()()()()(

d

j

d

ij

i

j

d

i
i jnbncjnbjnainqnp . 

Again )(nq  is divisible by )1( −nb  therefore we finally get 
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)(
)()1()(

nc
nxnbny −

= , 

where )(nx  is an unknown  polynomial satisfying  

∏∏∏∑
−

=

−

−=

−

==
+=+++

1

0

1

1

1

00
)()()()()()(

d

j

d

ij

i

j

d

i
i jnbncjnbjnainxnp .                  (3.7) 

Therefore finding hypergeometric solutions of 

(1.3) is equivalent to finding polynomial 

solutions of (3.7). The correspondence between 

them is that if )(nx  is a nonzero polynomial 

solution of (3.7) then 

  

nn t
nc

nxnbz
)(

)()1( −
= ,                                                (3.8) 

is a hypergeometric solution of (1.3), and vice versa.                                                                            

  

Example 3.1. Find all Hypergeometric Solutions of 

nnnn tzzz =+− ++ 12 ,                                                        (3.9) 

where 1+= ntn . Then 

)(
)1(

)(
)(

1n
2n )( 1

nc
nc

nb
na

t
tnr

n

n +
=

+
+

== + ,   

where 1)(),(1)( +=== nncnbna . From (3.7), )(nx  is a polynomial satisfies 

1)()1()2( +=++−+ nnxnxnx , 

The polynomial solution of this equation is nnx =)( . By (3.8), we have  

nt
nc

nxnbz nn =
−

=
)(

)()1(
 

is a hypergeometric solution of (1.3) 

 

    

4. Another Approach for Hypergeometric 

Solutions for Recurrences of Arbitrary 

Order 

                        In this section we give another approach 

to find hypergeometric solutions of the linear 

recurrence (1.3) with the additional restriction  

that the leading and trailing coefficients are constant. 
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Lemma 4.1.  Let 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++−∈= ∏∏

−

=

−

=

1)()(,)()(gcddeg:max
1

0

1

0

d

j

d

j

kjnbkncjdnancNkL , 

and let ok  be defined as in (2.3). Then okL = . 

 

Proof. Let  

( ))()(),1()(gcd)(1 knbkncnanckg ++−= , 

 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++−= ∏∏

−

=

−

=

1

0

1

0
2 )()(,)()(gcd)(

d

j

d

j
jknbkncjdnanckg . 

For any k  we have )(|)( 21 kgkg  hence okL ≥ . 

Suppose that for an irreducible polynomial )(|)(),( 2 Lgntnt , i.e. 

                                       )()(|)( idnancnt +−      for some  { }1,...,1,0 −∈ di , 

and 

                                   )()(|)( LjnbLncnt +++      for some     { }1,...,1,0 −∈ dj . 

Hence  

                                                    )1()1(|)1( −−−+−−+ naidncidnt , 

and 

                                       )1()1(|)1( LjidnbLidncidnt ++−−++−−+−−+ .      

It follows that  

             ( ))1()1(),1()1(gcd|)1( LjidnbLidncnaidncidnt ++−−++−−+−−−+−−+ . 

Then we have   

     okLjid ≤++−− 1 , 

which implies that okL ≤ . Hence okL = .                                                                                              
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Given a hypergeometric term nt  and suppose 

that there exists a hypergeometric solution nz  

satisfying equation (1.3). We immediately start  

with equation (3.1) because there is no 

difference at the beginning. We look for a 

rational function )(ny  satisfying

1)()()(
0

1

0
=++∑ ∏

=

−

=

d

i

i

j
i jnrinynp , 

where nn ttnr /)( 1+=  is rational function of n , 

then the problem of finding hypergeometric 

solution of (1.3) is reduced to the problem of 

finding rational solutions of (3.1). Let us 

express )(nr  in term of their Gosper 

representation as in (1.1) and let 

)(/)()( ngnfny =  such that 

( ) 1)(),(gcd =ngnf . Substitute this together 

with (1.1) into (3.1), we obtain 

∏∑ ∏∏
−

==

−

=

−

=
+=++

+
+

+
1

00

11

0
)()()()(

)(
)()()(

d

j

d

i

d

ij

i

j
i jnbncjnbjna

ing
infincnp .          (4.1) 

Letting                        

                                        ( ))(),...,2(),1(lcm)( dngngngnl +++= ,                                    (4.2) 

and multiplying equation (4.1) by )()( ngnl , we obtain 

      ∏∑ ∏∏
−

==

−

=

−

=

+=++
+

++
1

00

11

0

)()()()()()()(
)(

)()()()(
d

j

d

i

d

ij

i

j
i jnbngnlncngjnbjna

ing
nlinfincnp .      (4.3) 

From  (4.2), we have  the following divisibility conditions 

)(|)( nling +    for di ,...,2,1= . 

Thus )(/)( ingnl +  are polynomial for di ,...,2,1= . Form (4.3) we obtain 

( ) ( ))(),...,2(),1(lcm)()(|)(
1

0
dngngngjnbncnpng

d

j
++++∏

−

=
o .                      (4.4) 

Similarly, multiplying equation (4.1) by )()1( dngnl +−  and then substituting dn −  for n , we 

obtain that 

( ) ( ))(),...,2(),1(lcm)()(|)(
1

dngngngjnancdnpng
d

j
d −−−−− ∏

=
.            (4.5) 

Shifting n  by 1  in (4.4)  yields 

       ( ))1(),...,3(),2(lcm)()1()1(|)1(
1

++++++++ ∏
=

dngngngjnbncnpng
d

j
o .     (4.6) 



    Basrah Journal of Science (A)                                                                       Vol.30(1),15-27, 2012 
 

25 

Substituting (4.6) in (4.4) we see that )(ng  d 

Ivides 

 

)).(),...,2(

)),1(),...,3(),2((lcm)()1()1((lcm)()()(
1

1

0
0

dngng

dngngngjnbncnpjnbncnp
d

j

d

j

++

++++++++ ∏∏
=

−

=
o

 So we  can write 

( ).)1(),...,3(),2(lcm)()()1()()1()(|)(
1

1

0
++++++++ ∏∏

=

−

=
dngngngjnbjnbncncnpnpng

d

j

d

j
oo

By induction we may derive for 1≥k  
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Since K has characteristic zero, then for large enough k we get 
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for large enough k . Analogously form (4.5) we get 
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for large enough k . By assumption )(0 np and )(npd  are constant. Therefore  
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i.e., 
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When k  goes to infinity, we obtain 
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From equation (4.1) we get  
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The next step is simply to set 
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Finding hypergeometric solutions of (1.3) is 

therefore equivalent to finding polynomial 

solutions of (4.7). The correspondence between 

them is that if )(nf  is a nonzero polynomial 

solution of (4.7) then  

 

 nn t
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= ,                                          (4.9) 

is a hypergeometric solution of (1.3), and vice 

versa.                                                                         

 

Example 4.1. Find all Hypergeometric 

Solutions of  

nnnn tzzz =+− ++ 12 ,                          (4.10) 

where, 1+= ntn . Then 
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From  Lemma 4.1, 0=L . From (4.8), 

1)( += nng . By (4.7), )(nf  is a polynomial 

satisfies 

1)()1()2( +=++−+ nnfnfnf .  

The polynomial solution of this equation is 

nnf =)( . By (4.9), we have  

nt
ng
nfz nn ==
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)(

 

is the  hypergeometric solution of (4.10).  
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