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Abstract 

 
     In this paper we give two approaches for Gosper's algorithm. Also we 
give analysis to the degree of rational solutions of certain first order 
difference equation. Furthermore, we present an approach to find rational 
solutions of first order recurrences. 
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1. Notations 
Let N  be the set of natural numbers, K  be the field of characteristic zero, 

)(nK  be the field of rational functions over K , ][nK  be the ring of 
polynomials over K , deg( p ) denotes the polynomial degree (in n ) of any 

][nKp ∈ , 0≠p . We define 1)0deg( −= . We assume the result of any gcd 
(greatest common divisor) computation in ][nK  as being normalized to a 
monic polynomial p , i.e., the leading coefficient of p  being 1. Recall that a 
non-zero term nt   is called a hypergeometric term over K  if there exists a 
rational function )()( nKnr ∈  such that 
 

)(1 nr
t

t

n

n =+

. 
 
    *E-mail: hus6274@hotmail.com 

     Gosper's algorithm has been extensively studied and widely used to 
prove hypergeometric identities see, for example, [6, 7, 8, 10, 11, 13, 14]. 
Given a hypergeometric term nt , Gosper's algorithm is a procedure to find 
a hypergeometric term nz  satisfying  
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 ,1 nnn tzz =−+                      (1.1)       
     
if it exists, or confirm the nonexistence of any solution of (1.1). The key 
idea of the Gosper's algorithm lies in the representation of the rational 
functions. Gosper showed that any rational function )(nr  can be written in 
the following form, called the Gosper representation: 
 

,
)(

)1(
)(
)()(

nc
nc

nb
nanr +

=
                    (1.2) 

 
where ba,  and c  are polynomials over K  and 
 

1))(),(gcd( =+ hnbna   for all ∈h N. 
 
Petkovšek [8] realized that the Gosper representation becomes unique, 
which is called the Gosper-Petkovšek representation, or GP representation, 
for short, if we further require that cb,  are monic polynomials such that 
 

,1))(),(gcd( =ncna  
 
   .1))1(),(gcd( =+ncnb  
     In [11], Paule and Strehl gave a derivation of Gosper's algorithm by 
using GP representation, also see [5]. In [10], Equipped with the Greatest 
Factorial Factorization (GFF), Paule present a new approach for Gosper's 
algorithm. Paule's approach leads to the same algorithm Gosper, but in a 
new setting.  In [9], Lisoněk and et al., gave a detailed study of the degree 
setting for Gosper's algorithm. 
 
     The problem of computing rational solutions is quite important in 
computer algebra because some interesting problems can be reduced to it. 
One of the applications of computing rational solutions is a generalization 
of Gosper's algorithm. In [1] an algorithm to find rational solutions has 
been proposed. That algorithm is quite complicated. Conceivably such an 
algorithm could give a denominator of smaller degree than the algorithm 
proposed in [3]. Undoubtedly the algorithm described in [3] is more 
elementary in its structure. Additionally, it can be adapted for the case of 
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q -difference equations. For more details about rational solutions see [2, 4, 
15, 16]. 
 
The contents of this paper are as follows: 
 
In sections 2 and 3, we give two approaches for Gosper's algorithm. In 
section 4, we give analysis to the degree of rational solutions to the 
equation that appeared in the derivation of Gosper's algorithm. Finally, in 
section 5, we give an approach to find rational solutions of first order 
recurrences. 
        
2. An Approach for Gosper's Algorithm 
 
In this section we present an approach for Gosper's algorithm. To do this 
we need the following lemma: 
 
Lemma 2.1. Let ][,,,,, nKCBAcba ∈  such that 
 
gcd( )(),( ncna )=gcd( )1(),( +ncnb )=gcd( )(),( hnBnA + =1   ∀  Nh ∈ . 
If 

,
)(

)1(
)(
)(

)(
)1(

)(
)(

nC
nC

nB
nA

nc
nc

nb
na +

=
+

 
then )(nc  divides )(nC . 
 
Proof. See [12].                                                                                                                               
□ 
 
     Given a hypergeometric term nt  and suppose that there exists a 
hypergeometric term nz  satisfying (1.1). By using (1.1) we get 

.
1

1
11 −

=
−

=
++

n

nnn

n

n

n

z
zzz

z
t
z

 

Let 
.)(

n

n
t

zny =
 It follows that )(ny  is a rational function of n . Substituting 

ntny )(  for nz  in (1.1) to obtain 
                 ,1)()1()( =−+ nynynr                                                  (2.1) 
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where n

n
t

tnr 1)( +=
 is a rational function of n . Let 

,
)(
)()(

ng
nfny =

                                (2.2) 
 

where )(),( ngnf  are two unknown relatively prime polynomials. 
Substituting (2.2) into (2.1) to obtain 

      )(
)1(

)1(
)()()(

ng
ng

nf
ngnfnr +

+
+

=
.                                            (2.3) 

Let 0n  be the largest Nn ∈  such that n  is a pole of r , or ∞−  if no such n  
exists. Then, clearly 

∏
−

+=

=
1

10

)(
n

nk
n krCt

  for  n > 0n , 
satisfies 

,)(1 nn tnrt =+  
for almost all n , where KC ∈  is an arbitrary constant. Let na)(  denote the 
rising factorial for a , 
namely  

)1()1()( −++= naaaa n L  
If )(nr  factors into linear factors over K : 

    
,

)())((
)())((

)(
21

21

s

ru

nnn
nnn

nznr
βββ
ααα

−−−
−−−

⋅⋅=
L

L

                    (2.5) 
 
where ,,,, ZuKz ji ∈∈βα and nji ,0, ≠βα , for all Nn ∈ , then by iterating (2.4) 
and using equation (2.5) we get that 
 

,
)()()(
)()()(

))!1((
21

21

21

211

nsnn

nrnn

r

sun
n nCzt

βββ
ααα

ααα
βββ

−−−
−−−

−= −

L

L

L

L

 
 
where KC ∈  is an arbitrary constant. On the Other hand 
 

n

n

t
t

nr 1)( +=
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        = nrnn

nrnn

s

u

nnn
nz

)()()(
)()()(

)())(( 21

11211

21 ααα
ααα

βββ −−−
−−−

+−+−+−
⋅ +++

L

L

L  
 

         = )(
)1(

)(
)(

nc
nc

nb
na +

                                           (2.6) 
 
where nrnnnc )()()()( 21 ααα −−−= L    and 

)())(()(,)( 21 nnnnbnzna s
u +−+−+−=⋅= βββ L  if  0≥u  or 

)())(()(,)( 21 nnnnnbzna s
u +−+−+−== − βββ L  otherwise. From equations (2.3) 

and 
(2.6) we obtain 
 

,
)(

)1(
)1(

))()((
)(

)1(
)(
)(

ng
ng

nf
ngnf

nc
nc

nb
na +

+
+

=
+

                                         (2.7) 

By Lemma 2.1, )()( ncng , so )(nc  is a suitable denominator for )(ny . 

Write )(
)()(

nc
nvny =

, where )(nv  is an unknown polynomial, and substitute this 
together with (2.6) into (2.1) to obtain 

).())()(()1()( nbncnvnvna +=+  This shows that )(nb  divides )1( +nv , hence we 
have  
 

)(
)()1()(

nc
nxnbny −

=
,                                                       (2.8) 

 
where )(nx  is a polynomial of n . Substitution of (2.6) and (2.8) into (2.1) 
shows )(nx  satisfies 
 

).()()1()1()( ncnxnbnxna =−−+                                              (2.9) 
 
Now if )(nx  is a polynomial solution of (2.9) then 
 

nn t
nc

nxnbz
)(

)()1( −
=

 
is a hypergeometric solution of (1.1) .                                  
□                                                            
3. Another Approach for Gosper's Algorithm  
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In this section we present another approach for Gosper's algorithm. Let us 
define the hypergeometric term nt  as  

!)()()(
)()()(

21

21

n
zt

n

nsnn

nrnn
n βββ

ααα
L

L
=

, 
 
where 0, ≥sr , z , Kji ∈βα , , ( ,1 ri ≤≤  sj ≤≤1 ), 0≠z , and nji −≠βα , , for all 

Nn ∈ . We start with equation (2.3) (there is no difference at the beginning): 
Find relatively prime polynomials )(nf , )(ng  satisfying 
  

,
)(

)1(
)1(

))()(()(
ng

ng
nf

ngnfnr +
+

+
=

 

where n

n
t

tnr 1)( +=
 is a rational function of n . By using the above definition 

of )(, nrtn  can be viewed as follows: 
,

)(
)1(

)(
)()(

nc
nc

nb
nanr +

=
                                                    (3.1) 

 
where ),())()(1()(,)( 21 nnnnnbzna s ++++== βββ L nrnnnc )()()()( 21 ααα L= . From 
equations (3.1) and (2.3) we obtain 
 

)(
)1(

)1(
))()((

)(
)1(

)(
)(

ng
ng

nf
ngnf

nc
nc

nb
na +

+
+

=
+

,                                            (3.2) 
 

By Lemma 2.1, )()( ncng , so )(nc  is a suitable denominator for )(ny . Write 
,)(

)()( nc
nvny =

 where )(nv  is an unknown polynomial, and substitute this 
together with (3.1) into (2.1) to obtain )())()(()1()( nbncnvnvna +=+ . This 
shows that )(nb  divides )1( +nv , hence we have 

ntnc
nxnbny

)(
)()1()( −

=
,                                                     (3.3) 

 
where )(nx  is a polynomial of n . Substitution of (3.1) and (3.3) into (2.1) 
shows )(nx  satisfies 
 

).()()1()1()( ncnxnbnxna =−−+                                             (3.4) 
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Now if )(nx  is a polynomial solution of (3.4) then  
 

nn t
nc

nxnbz
)(

)()1( −
=

 
is a hypergeometric solution of (1.1).                                           
□ 
4. The Degree of the Rational Solution  
 
In this section we consider the degree of the rational solution )(ny  of 
equation (2.1). Let )(nr   and )(ny  be as in (1.2) and (2.2) respectively. By 
substituting )(nr  and )(ny  into (2.1) we obtain 
 

).1()()()()1()()()()()1()1()( +=+−++ ngngncnbngnfncnbngnfncna                (4.1) 
 
Let )1()()( += ncnana , )()()( ncnbnb =  then we obtain 
 

).1()()()1()()()()1()( +=+−+ ngngnbngnfnbngnfna                           (4.2) 
 
Assume that pnf =)(deg , qng =)(deg . We distinguish two cases: 
 
Case 1: )(deg)(deg nbna ≠  or lc ≠)(na  lc )(nb . 
 
The leading terms on the left hand side of (4.2) do not cancel. Hence the 
degree of the left hand side of (4.2) is  { })(deg),(degmax nbnaqp ++  . Since the 
degree of the right hand side is qnb 2)(deg + , it follows that  
 

{ })(deg),(degmax)(deg nbnanbqp −=−  
 
is the only candidate for the degree of a nonzero rational solution of (4.2).   
 
Case 2: )(deg)(deg nbna =  or lc =)(na  lc )(nb = λ . 
 
The leading terms on the left hand side of (4.2) cancel. Again there are two 
cases to consider. 
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(2a) The terms of the second-highest degree on the left hand side of (4.2) 
do not cancel. Then the degree of the left hand side of (4.2) is 

qnanaqp 2)(deg1)(deg +=−++ , thus  
 

1=− qp . 
 
(2b) The terms of the second-highest degree on the left hand side of (4.2) 
cancel. Let 
 

),()( 21 −− ++= kkk noAnnna λ                                               (4.3) 
 
   ),()( 21 −− ++= kkk noBnnnb λ                                                (4.4) 
 
   ),()( 21

10
−− ++= ppp noncncnf  

 
    ),()( 21

10
−− ++= qqq nondndng  

 
where 0, 00 ≠dc . Then, expanding the terms on left of (4.2) successively, we 
find that 
 

),()()1( 21
100

−− +++=+ ppp noncpcncnf
 

 
),()()1( 21

100
−− +++=+ qqq nondqdndng  

 
),()))((()()1()( 21

01010000
−++−++++ +++++=+ qpkqpkqpk noncdAccpcdndcngnfna λλλ  

 
),()))((()1()()( 21

01010000
−++−++++ +++++=+ qpkqpkqpk nondcBddpdcndcngnfnb λλλ

 
 

).())(()1()()()()1()( 21
00

−++−++ +−+−=+−+ qpkqpk nonBAqpdcngnfnbngnfna λ    (4.5) 
 
 
By assumption, the coefficient of 1−++ qpkn  on the right side of (4.5) vanishes, 
therefore .0))((00 =−+− BAqpdc λ  It follows that  

λ
ABqp −

=−
. 
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Thus in Case 2 the only possible degrees of nonzero rational solutions of 

(4.2) are 1 and 
λ)( AB −

, where A and B  are defined in (4.3) and (4.4), 
respectively. Of course, only nonnegative integer candidates need be 
considered. When there are two candidates we can use the larger of the two 
as an upper bound for the degree. Note that, in general, both Cases (2a) and 
(2b) can occur since equation (4.2) may in fact have nonzero rational 
solutions of two distinct degrees. 
 
 
5. Rational Solutions of First Order Recurrences  
 
In this section we consider the problem of finding rational solutions )(nR  of 
the equation  
 

),()()()1()( 01 npnRnpnRnp =−+                                             (5.1) 
 
where ][,, 10 nKppp ∈  are given non-zero polynomials. Equation (5.1) can be 
written as 
 

,1)()1()( =−+ nynynr                                                      (5.2) 
where 

,
)(

)1(
)1(

)()(
0

1

np
np

np
npnr +
+

=
                                                   (5.3) 

and 
 

,
)(

)()(
)( 0

np
nRnp

ny =
                                                        (5.4) 

are rational functions of n . Hence finding rational solutions of (5.1) is 
therefore equivalent to finding rational solutions of (5.2). Note that 
equation (5.2) is the same as equation (2.1). Equation 
(5.2) or (2.1) is a well known equation appears in many approaches for 
Gosper's algorithm, see for example the above two approaches. Write )(nr  
as in (2.6) or (3.1) as follows: 
 

.
)(

)1(
)(
)()(

nC
nC

nB
nAnr +

=
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By using one of the above two approaches for Gosper's algorithm we get 
 

,
)(

)()1()(
nC

nxnBny −
=

                                                      (5.5) 
where )(nx  is a polynomial of n  satisfying 
 

).()()1()1()( nCnxnBnxnA =−−+                                            (5.6) 
 
Now if equation (5.6) can be solved for ][nKx∈  then 
 

)()(
)()1()()(

0 nCnp
nxnBnpnR −

=
 

 
is a rational solution of (5.1), otherwise no rational solution of (5.1) exists.                                  
□ 
 
 
Example 5.1. Given 

),()()()1()( 01 npnRnpnRnp =−+  
 
with ),12)(1()(1 +−= nnnp  ),12)(3()(0 −−= nnnp  )2(4)( += nnnp , then 
 

,
)2()2(

)3)(1)(1(
1
1

)(
)1(

)1(
)()(

0

1

+−
++−

=
+

+
=

nnn
nnn

np
np

np
npnr

 
 
Hence ,1)( =nA  ,1)( =nB  ).2()2()( +−= nnnnC  By (5.6), )(nx  is a polynomial 
which satisfies 
 

)2()2()()1( +−=−+ nnnnxnx  

The polynomial 
)8)(1(

4
1)( 2 −−−+= nnnnknx

 is a solution of this equation, 

where k  is constant. Therefore, )12)(3)(2(
)8)(1(4)(

2

−−−
−−−+

=
nnn

nnnnknR
 is a rational 

solution to the equation (5.7). 
                                                                                                                                                
□           
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  خوارزمية جوسبر والحلول النسبية للمعادلة التكرارية
 من الرتبة الاولى

  *حسام لوتي سعد
  جامعة البصرة، كلیة العلوم، قسم الریاضیات

  
  

  الخلاصة
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كذلك نعطي تحلیل لدرجة نوع مح دد م ن    . في ھذا البحث نعطي اسلوبین لخوارزمیة جوسبر      

ع لاوة عل ى ذل ك نق دم اس لوب لایج اد الحل ول        . ال دوال الن سبیة لمعادل ة تكراری ة م ن الرتب ة الاول ى       

  .  من الرتبة الاولى النسبیة لمعادلة تكراریة

  

  

  

  

  

  

  

  

 

 

  

 

  
  

Urge
nt

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

