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Abstract

In this paper we give two approaches for Gosper's algorithm. Also we
give analysis to the degree of rational solutions of certain first order
difference equation. Furthermore, we present an approach to find rational
solutions of first order recurrences.

Keywords - Gosper's algorithm, hypergeometric solution, rational solution.

1. Notations
Let N be the set of natural numbers, K be the field of characteristic zero,

KM be the field of rational functions over K, KNl pe the ring of
polynomials over K, deg(P) denotes the polynomial degree (in ") of any
Pl K[l p* 0 We define®9() =-1 \We assume the result of any gcd
(greatest common divisor) computation in K[ as being normalized to a
monic polynomial P, i.e., the leading coefficient of P being 1. Recall that a
non-zero term & s called a hypergeometric term over K if there exists a
rational function (M1 K gych that

tn+1
=r(n
t (n)

n

*E-mail: hus6274@hotmail.com
Gosper's algorithm has been extensively studied and widely used to
prove hypergeometric identities see, for example, [6, 7, 8, 10, 11, 13, 14].

Given a hypergeometric term ', Gosper's algorithm is a procedure to find
a hypergeometric term % satisfying
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n+1 n n (1_1)

If it exists, or confirm the nonexistence of any solution of (1.1). The key
idea of the Gosper's algorithm lies in the representation of the rational
functions. Gosper showed that any rationa function "W can be written in
the following form, called the Gosper representation:

r(n) :@C(n-'-l)

b(n) c(n) (1.2)

where P and ¢ are polynomiasover K and
ged(a(n),b(n+h)) =1 for al| h1 N.

Petkovsek [8] realized that the Gosper representation becomes unique,
which is called the Gosper-Petkovsek representation, or GP representation,

for short, if we further require that ®¢ are monic polynomials such that
ged(a(n), c(n)) =1,

gcd(b(n),c(n+1) =1.

In [11], Paule and Strehl gave a derivation of Gosper's algorithm by
using GP representation, also see [5]. In [10], Equipped with the Greatest
Factorial Factorization (GFF), Paule present a new approach for Gosper's
algorithm. Paul€e's approach leads to the same algorithm Gosper, but in a
new setting. In[9], Lison¢k and et al., gave a detailed study of the degree
setting for Gosper's algorithm.

The problem of computing rational solutions is quite important in
computer algebra because some interesting problems can be reduced to it.
One of the applications of computing rational solutions is a generalization
of Gosper's algorithm. In [1] an algorithm to find rationa solutions has
been proposed. That algorithm is quite complicated. Conceivably such an
algorithm could give a denominator of smaller degree than the algorithm
proposed in [3]. Undoubtedly the algorithm described in [3] is more
elementary in its structure. Additionally, it can be adapted for the case of

| SSN-1994-697X

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

daouslall slulysll gluso dlhe  abed) /alaad e G /as) 2008{3}

9-difference equations. For more details about rational solutions see[2, 4,
15, 16].

The contents of this paper are as follows:

In sections 2 and 3, we give two approaches for Gosper's algorithm. In
section 4, we give anaysis to the degree of rational solutions to the
equation that appeared in the derivation of Gosper's algorithm. Finaly, in
section 5, we give an approach to find rational solutions of first order
recurrences.

2. An Approach for Gosper's Algorithm

In this section we present an approach for Gosper's algorithm. To do this
we need the following lemma:

Lemma2.1. Let @b.c.ABCI KInl gych that

ged(an.cM)=gcd(P(N).c(n+1))=ged(AM.B(N+h) =1 * hi N,
If

a(n) c(n+1) _ A(n) C(n+1)
b(n) c(n) B(n) C(n)
then <" divides ¢

Proof. See [12].
O

Given a hypergeometric term % and suppose that there exists a

hypergeometric term % satisfying (1.1). By using (1.1) we get

v =2 - . -
Let n |t followsthat Y(" isarational function of n. Substituting

YWt for Z in (1.1) to obtain
r(My(n+D- y(m =1 (2.1)
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r(n) = tn%
where n jsarationa function of n. Let
_ f(n)
y(n) =—-=,
g(n) (2.2)

where f(n),a(n) are two unknown relatively prime polynomials.
Substituting (2.2) into (2.1) to obtain
() = f(n)+9g(n) g(n+1)
f(n+) g(n) (2.3)

Let ™ be the largest Nl N gych that n iIsapoleof r,or - ¥ if nosuch n
exists. Then, clearly

t=c O
k=no+1 fOI’ n>n01
satisfies
1:n+1 = r-(n)tn’
for amost al n, where C1 K s an arbitrary constant. Let (¥» denote the

rising factorial for a,
namely

(8), =a(a+)L(a+n- 1)
If "(") factorsinto linear factors over K:
, (n-a,)(n-a,)L(n-a,)
(n-b)(n- b,)L(n- b,)’ (25)

r(n) =zxn

where 22101 KUl Zignq a0, 2 00 ¢ o) nl N then by iterating (2.4)
and using equation (2.5) we get that

ble Lbs (-al)n(-az)n L(-ar)n

t, =Cz"*((n- YhH)" aa,La, (-b,),(-b,),L(-b,), ’

whereCl K jsan arbitrary constant. On the Other hand

tn+1
r(n) =—

n
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2" (_al)n+1(_a2)n+1l—(_ar)n+l
= (' b1 + n)(' bz + n)l—(' bs + n) (' al)n(' az)n I—(' ar)n

a(n) c(n+1)

~b(n) () (2.6)
Wherec(n):(-al)n(-az)nl—(-ar)n and
a(n) = 20*,b(r) = (-b, +n)(- b, +ML(-b, +1)  if GO0 o
a(n) =z,b(n) =n"(-b, +M(-b, +ML(-b +N) gtherwise. From equations (2.3)

and
(2.6) we obtain

a(n) c(n+1) _ (f(n)+g(n) g(n+1)

o) o f(+)  g(n) 2.7)

By Lemma 2.1, 9™ | ¢ g5 <M is a suitable denominator for Y.
Q)

Write (N | where ¥(" js an unknown polynomial, and substitute this

together with (2.6) into (2.1) to obtain
a(mv(n+1) = (v(n) +c(m)b(n). This shows that P divides V("*D | hence we
have

_ b(n- 1)x(n)

y(n) o 28)

where X" s a polynomial of n. Substitution of (2.6) and (2.8) into (2.1)
shows XN satisfies

a(n)x(n+1) - b(n- 9)x(n) = c(n). (2.9)

Now if X" jsa polynomial solution of (2.9) then

7 = b(n- 1)x(n) ¢
c(n)
IS a hypergeometric solution of (1.2
O
3. Another Approach for Gosper's Algorithm
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In this section we present another approach for Gosper's algorithm. Let us
define the hypergeometric term ' as

t - (al)n(az)n L(ar)n Z_n

" (bl)n(bz)n L(bs)n n!

where :S°? O’ z, ai!bjT K’ (1£i£r, 1£j£5)’ z' 0, and a;,b;* -n’ for all
nl N, We start with equation (2.3) (thereis no difference at the beginning):
Find relatively prime polynomials f(" 9(" satisfying

r(n) = (f(m+g) gln+1)
f(n+D)  g(n)

=ty | . -

where t isarational function of n. By using the above definition

of &' can be viewed as follows:

() _a(n) ¢(n+1)

b(n) c(n) ' (3.1)

Wherea(n) =z b(n) = (n+1)(b1 + n)(bz + n) I—(bs + n)’ C(n) = (al)n(az)n L(ar)n . From
equations (3.1) and (2.3) we obtain

a(n) c(n+1) _ (f(n)+g(n)) g(n+1)
b(n) c(n) f(n+l g(n) ’ (3_2)

By Lemma2.1, 9 | & g5 c) js 4 suitable denominator for Y(M . Write

ym =Y/ .
¢’ where V(M js an unknown polynomial, and substitute this

together with (3.1) into (2.1) to obtain aMv(n+D =) +cmb(n) = This
shows that (M divides Y("+3  hence we have

y(n) = bin- Hx(n) C (i))x(n) t

n

(3.3)

where X" s a polynomial of n. Substitution of (3.1) and (3.3) into (2.1)
shows X" satisfies

a(n)x(n+1) - b(n- 9)x(n) = c(n). (3.4)
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Now if X" jsa polynomia solution of (3.4) then
7 = b(n- 1)x(n) ¢
c(n)
IS a hypergeometric solution of (1.2).

O
4. The Degree of the Rational Solution

In this section we consider the degree of the rationa solution Y(M of
equation (2.1). Let "™ and Y beasin (1.2) and (2.2) respectively. By
substituting (M and Y(M into (2.1) we obtain

a(nc(n+1) f(n+1)g(n)- b(n)c(n) f(n)g(n+1) =b(n)c(n)g(n)g(n+1). (4_1)
Let & =ame(n+1) b(n) =b(N)c(n) then we obtain

a(n) f (n+1)g(n) - b(n) f(n)g(n+1) =b(n)g(n)g(n+1). (4.2)
Assume that 983 T(n) = p dega(n) =a \\e distinguish two cases:

Case 1: dega(n)* degb(n) or |c aAM* |¢ b(n)

The leading terms on the left hand side of (4.2) do not cancel. Hence the
degree of the left hand side of (4.2) is P*+4*+max{dega(n).degb(®} . Sincethe
degree of the right hand side isd9P(M +29 it follows that

p- g =degb (n) - max{dega(n),degb ()}
Is the only candidate for the degree of a nonzero rational solution of (4.2).
Case 2- dega(n) =degb(n) g |c @) = |c b(N =1

The leading terms on the left hand side of (4.2) cancel. Again there are two
cases to consider.
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(28) The terms of the second-highest degree on the left hand side of (4.2)
do not cancel. Then the degree of the left hand side of (4.2) is
p+q+dega(n)- 1=dega(n) +2q thys

p-q=1

(2b) The terms of the second-highest degree on the left hand side of (4.2)

cancel. Let
a(n) =1 n“ + An“* +o(n*?), (4.3
b(n) =1 n* + Bn“* +0(n*?), (4.4)

f(n) =c,n® +c,n®* +o(n"?),
g(n) = dyn +d;n** +o(n*?),

where %9 * 0 Then, expanding the terms on left of (4.2) successively, we
find that

— p p-1 p- 2
f(n+1) =c,n” +(c,p+tc,)n”" +o(n"*),
g(n+1) =d,n? +(d,g+d,)n"* +o(n"?),
a(n) f(n+1)g(n) = c,d,l n**** +(d, (I (c,p+c,)+ Ac,) +d,c,l )nk*Prt+g(nk P2y,

B(n) f (n)g(n +1) = COdOI nk+p+q + (CO (I (dO p + dl) + BdO) + Cldol )nk+p+q-l + O(nk+p+q- 2)1

a(n) f(n+1)g(n)- b(n)f(n)g(n+2) =c,d,(I (p- q) + A- B)n**P*¥ +o(n**Pa-2), (4.5)

+p+g-1

By assumption, the coefficient of n on theright side of (4.5) vanishes,

therefore S%( (P~ a)+A- B) =0. |t fol|ows that

B- A
p- q:l_
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Thus in Case 2 the only possible degrees of nonzero rational solutions of

B4/ o
(4.2) are 1 and , where A and B are defined in (4.3) and (4.4),
respectively. Of course, only nonnegative integer candidates need be
considered. When there are two candidates we can use the larger of the two
as an upper bound for the degree. Note that, in general, both Cases (2a) and
(2b) can occur since equation (4.2) may in fact have nonzero rational
solutions of two distinct degrees.

5. Rationa Solutions of First Order Recurrences

In this section we consider the problem of finding rationa solutions R of
the equation

P (MR(n+1) - p,(MR(n) = p(n), (5.1)

where Po: P PT KINI gra given non-zero polynomials. Equation (5.1) can be

written as
r(ny(n+1)- y(n) =1, (5.2
where
r(n) - pl(n) p(n +1) ’

P (n+1)  p(n) (5.3
and
y(n) = po(n)R(n)’

p(n) (5.4)

are rational functions of n. Hence finding rational solutions of (5.1) is
therefore equivalent to finding rational solutions of (5.2). Note that
eguation (5.2) isthe same as equation (2.1). Equation

(5.2) or (2.1) is a well known equation appears in many approaches for
Gosper's agorithm, see for example the above two approaches. Write ("
asin (2.6) or (3.1) asfollows:

_A) C(n+)

g B(n) C(n)
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By using one of the above two approaches for Gosper's algorithm we get

_ B(n- Yx(n)
Cn (5.5)
where X(" s apolynomial of n satisfying

y(n)

A(n)x(n+1) - B(n- Dx(n) =C(n). (5.6)

Now if equation (5.6) can be solved for X! KINl then

R = PVB(- Dx()
o (NC(M)

Isarational solution of (5.1), otherwise no rational solution of (5.1) exists.
O

Example 5.1. Given

P (MR(N+1) - po(MR(n) = p(n),

with P =(n-D(@n+1), ()= (- (- D, p(n) =4n(n+2) hen

p(n) p(n+D) _1(n-H(n+H(n+3)

r(n) =
Po(n+1) p(n) 1 (n-2)n(n+2)

Hence AN =1 B(M=1 C()=(n-2n(n+2). gy (56), XM js a polynomial
which satisfies

X(n+1) - x(n) =(n- 2)n(n+2)

x(n) :k+%n(n- H)(n*- n- 8)

The polynomial Is a solution of this equation,

. _4k+n(n-H(n*- n- 8§

where k is constant. Therefore, (n-2)(n-3(2n-1) s a rational
solution to the equation (5.7).

O
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