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Abstract: In this paper, the technique of series solution to a class of initial value problems is developed and
assessed by Taylors' series for an accurate simulation of two-dimensional nonlinear biological population
model. To examine the accuracy and performance of the present solution technique whosederivation is based on
Taylors' series expansion, three standard test problems are simulated. To show the efficiency and accuracy of
the recent solution technique, the results of an approximate analytic solutions that we obtain are compared with
Adomian decomposition method (ADM),variational iteration method(VIM), improved element-free Galerkin
method (IEFGM) and the modified cubic B-Spline differential quadrature method(MCB-DQM). The proposed
simulation technique is precise, efficient, and has agreeable convergence for solving two-dimensional biological
population model.
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1 Introduction

Biological population model is a degenerate nonlinear partial differential equation which represents the distribution of
population density in an area and it is written in the following form:
o =V2() +0(), t=0,x,yER, (L.1)

with given initial condition p(x, y, 0),whereV2is the Laplacian operator,p(x, y, t) is the population density and o (p) is the
population supply. The population density p(x, y, t) is the number of individuals per unit volume at locale(x, y) and time
t, when we integral itover any sub region Rgives the total population of Rat time t.The population supplyo(p) is the rate at
which individuals are suppliedthrough births and deaths per unit volume at locale(x, y)at time t.The diffusion velocity
from one locale to other in the flow of populationdepicted by the function v(x, y, t)which represents the average velocity
of the individuals who at time toccupy locale(x, y).The functions p, vand ¢ must satisfy the law of population balance for
each sub region R of region Bat any time t:

d
EprdV+faRp.v.ndV=fRadV, (1.2)

wheren is the outward unit normal to the boundary R of R. Theabove equation affirms that the rate of change of
population of R plus the rate at which individuals leave R across its boundary must be equal to the rate at which individuals
are supplieddirectly to R [1-3].
There are three examples for a(p) combined in the following formula:
pe = V2(p?) + hp*(1 —rpP), (1.3)
whereo, f, h and r are real numbers. The first example is Malthusian law [1] we can obtain it by taking
h=ua=1r=0;

pe = V2(p?) + pp, (1.4
wherey is constant. The second example is Verhulst law [1] and we can obtain it by takingh =y, a =g =1, r =1
pe =VZ(p?) + up —yp?, (1.5)

wherey, y are positive constantsand the third example is Porous Media [4,5] and we can obtain it by takingh = —p, 0 <
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a<lr=0;
pr = V2(p?) — up?, where u > 0. (1.6)

Biological population model was solved by many researchers and for different cases of h, a, §,7 and initial condition.In
2007Shakeri [6] used the variation iteration method and Domain decomposition method and he show that the variation
iteration method is the best. In 2009 El-Sayed et al. [7] found a new solution in power series when they employ the Domain
decomposition method for finding the exact solutions of time fractional biological population model.In 2010 Roul [8] used
the homotopy perturbation and found that the results were very good by comparison with Adomian decomposition
method. In 2011Arafa et al. [9] obtained exact solutions of generalized biological populations equation subject to some
initial conditions by using homotopy analysis method (HAM). In 2013 Kumar et al. [10] succeeded in apply the homotopy
analysis transform method (HATM) to obtain the exact solutions of the generalized biological population equations subject
to some initial conditions. In 2014 Zhang et al. [11]used the improved element-free Galerkin (IEFG) method where they
demonstrated numerically that the quality of the results obtained by the IEFG method is very good.In 2016Sarwaret
al.[12]used optimal homotopy asymptotic method and compared with the exact solutions and they show that numerical
results were highly accurate, effective and easy in computation. In 2017Acanaet al. [13] obtained a new exact solution by
used a new approximate analytic technique named three dimensional conformable reduced differential transform method
(TCRDTM).In 2018Shakeel et al. [14] succeeded in finding closed form solutions of the population mode by applied
modified exp-function method. The main aim of this work is improving numerical solution for the two-dimensional
biological population model and extending the application of a new simulation scheme that we proposed it in previous
work [15].The efficiency of this technique to solve linear and nonlinear equations, and the exact solutions of nonlinear
biological population models are rare are stimulate us to employ a new technique to presented a comprehensive study for
intricate the two-dimensional biological population model. We obtained a good numerical results with high accuracy
through the very small absolute errors as well as obtaining exact solution for some problems after approximate the series
solutions. The numerical results show that the new simulated scheme was best compared with ADM, VIM [6],MCB-
SDQM]16], and IEFGM [11] for different measures of errors and CPU time.

This paper is planned as follows: Generating a simulation scheme in section 2, three problems are testing and discussion of

results is reported in section 3, in section 4the convergence analysis is presented. Finally, the conclusions are recorded in
section 5.

2 Generating a Simulation Scheme

In this section, the basic ideas for constructing new simulation scheme will be discussed.
Let’s consider the initial value problem:
u(x,y,t) = Flu] + g(x, ), (2.1)
with initial condition u(x, y, t,),
whereF [u] is linear and nonlinear operator and g(x, y)is the known function.
By using the integral for the two sides of equation (2.1) from t,to t,we obtain

t
u(x,y, t) = ulx,y,ty) + glx, y)At + fto Flu] dt, 2.2)
wheredt = t — t,, and F[u] can be expressed by the expand Taylors' series about t,, as;
Flul = [Flul], + [F/[ul], %+ [Ffu]], 9+ [P )], 5+ [FO)] 484 2.3)
to to 1! to 2! to 3! tp ™ > ’
_ ’ __ 0F[u] " _ 9%F[u] (n) _ 0"F[u]
where [Flull, = Flulle=,, [F'Tul], =2 |t=t0, [Pl =5, - |F [u]]to =%,
Substituting equation (2.3) into equation (2.2), and integrating resulting equation to obtain the series solution as;
2 3 n
u(x,y,t)=aO+a1At+a2%+a3%+~-+an%+~-, 2.4)
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Where

ao = u(x,,t0), &y = gCey) + [FIull, . a, = [Full, s = [F[al, o a0 = [F"PLal] . @5)
0
Here we used the chain rule to computing the derivatives of F[u]
F' [u] = ‘l(l=0 Z;;:O Fuxi_kyk [u] uxi_kykt s (26)
F”[ ] = 0 Zl ( W i-j i [u]uxi—iyjtt + Z;cl:O Z¥=0 F(uxi_kyk) ,(‘uxk_ryr) [u] U-xi—kykuxk—ryrt), (27)

Where n is highest derivative of u.

The series solution (2.4) at initial time(to =0) is

u(xy,tt)—a0+a1t+a2 +a3 ,+ Tyt (2.8)
3 Test Problems

Example 1. Consider the equation (1.3) for h = %, a=1, r=0,and p(x,y,0) = ,/xy becomes
1
o =V2%(p?) + % p . The exact solution for this problem isp(x, y,t) = \/xyes ", compare with equation (2.1), we have

9g(x,y) =0, . (3.1
F[p] = (pz)xx + (pz)yy + Ep (32)
Let § = x y, we note that the highest derivative of p is n = 2 and ¢, = 0 then according to (2.5), we get
1
ap =p(x,y,0)= &, . (3.3)
a; = [Flpl], = ((@)*)xx + (@0)?)yy + a0 =22, (34)
= [F’[P]]O = Z?:to{:o ik, k[ao] (ay)yi- kyk = _E_ (3.5
az; = [F”[ Zl OZ =Ty [ao](az),i- jyi
Yi-oXr=oF (atcsyi Mo toryr) [ao] (a1) yi-iyi (al)xk—ryr> = E &, (3.6)
From equation (2.8), we get the analytical approximate solution
1,3
Py, t) = B+ EZ t+— ? +E B+
S 1t 1
= 51+ <+ %+ %+~~)= gzes =[xy es’. (3.7)

Table 1.Comparison of solutions and CPU time between MCBS-DQM, IEFGM and present study for Example 1at x= y=0.5.

Method t=0.1 t=0.2 £=0.3 t=04 t=0.5
Exact 0.5101 0.5204 0.5309 0.5416 0.5526
Present study 0.5101 05204 0.5309 0.5416 0.5526
CPU(s) 0 0 0 0 0
MCBS-DQM][16] 0.5078 0.5170 0.5273 0.5379 0.5488
(A t=0.0001)
CPU(s) 0.31 0.61 0.94 1.20 1.48
IEFGM [11] 0.5069 0.5165 0.5268 0.5373 0.5481
(At=0.001)
CPU(s) - - - - -
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Table 2.Comparison of errors and CPU time between MCBS-DQM and present study for Example 1 withh, = h,=1/12.

Method Errors t=2 t=5 t=8 t=10
MCBS-DQM[16] L, 7.94E-03 1.50E-02 3.06E-02 2.07E-02
L, 2.31E-03 4.10E-03 1.13E-02 9.34E-02
CPU(s) 5.87 14.84 23.79 29.60
Present study L, 1.85E-07 1.23E-04 3.58E-03 1.81E-02
L, 3.42E-07 2.26E-04 6.62E-03 3.35E-02
CPU(s) 0.094 0.094 0.094 0.094
QCE 14
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Fig.1: (a) Exactsolution (b) Approximatesolution (c) Absoluteerror for?=0.1 with??=20 and h=0.05
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Fig.2: (a) Exactsolution (b) Approximatesolution (c) Absoluteerror for?=0.5 with??=20 and h=0.05

Figs.(1-2) display the exact solution, approximate solution and absolute errors at time 0.1 and 0.5 with N=20 and h=0.05.
Comparison of numerical solutions at x= 0.5, y= 0.5 for present study, MCBS-DQM and IEFGM are demonstrated in
Table 1. Table 2 shows the comparison between the present study and MCBS-DQM at time 2, 5, 8 and 10 with N=12 and

h=1/12.
Example 2.Consider the equation (1.3) withh = —=1,a = 1,7 = —= ﬁ = l,and p(x,y,0) = e3 364y,

That is the equation becomesp, = V?(p?) —p (1 + - p)and has the exact solutionp(x,y,t) = e3(xer -t .Compare with

equation (2.1), we have

g(x,y) =0, (3.8)
Flpl = (0®)xx + (02)yy —p —2P* (3.9)
Leté = e% @) we note that the highest derivative of p is n = 2 and t, = 0, then according to (2.5), we get
a, =p(x,y0)=¢, (3.10)
a, = [Flpl], = ((@0)xx + ((@0)?)yy — a0 — 2 (a0)? = —¢, (3.11)
= [F’[P]]O = iz=o Zi:o Pl"xi—kyk [ao] (al)xi—kyk =g, (3.12)
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2 i
a; = [F"[p]], = Zizoz,- GICACA NN
2 k
+ Z Z F a a i—-j.jla -, T
k=0 bmd =0 (pxi—jyi>'(pxk—ryr>[ o] ( l)x jy}( 1)xk y )
= —¢, (3.13)
From equation (2.8), we get the analytical approximate solution
t2 t3
pluy,t) =§—=§t+& =& o+
1
=f1-t+ tz_z‘_ ;_3'+...):§e—t=e§(x+y)‘t, (3.14)

Table 3: Comparison betweensolutionsof MCBS-DQM,IEFGM and present study for Example2 at x= 0.5, y=0.5.
Method t=0.1 t=0.2 t=03 t=0.4 t=0.5
Exact 1.26280 1.14263 1.03389 0.93550 0.84645
Present study 1.26280 1.14263 1.03389 0.93550 0.84645
CPU(s) 0 0 0 0 0
MCBS-DQM[16] 1.26282 1.14254 1.03381 0.93543 0.84641
(A t=0.0001)

CPU(s) 0.31 0.59 0.90 1.22 1.51
IEFGM|[11] 1.2574 1.1382 1.0302 0.9325 0.8440
(A t=0.0001)

CPU(s) - - - - -

Table 4: Comparison of errors and CPU time between MCBS-DQM and present study for Example 2 with h,= h,=1/12.

Method Errors t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 t=5
MCBS-DQM L, 2.689E-05 2.391E-05 2.141E-05 1.929E-05 1.747E-05 2.33E-07
el L 1.052E-04 8.604E-05 7.037E-05 5.756E-05 4.709E-05 3.40E-07

CPU(s) 0.33 0.64 0.96 1.29 15.17 30.31
Present study L, 8.253E-10 8.328E-10 7.741E-10 6.967E-10 3.731E-10 1.24E-07
L 2.000E-09 2.000E-09 2.000E-09 2.000E-09 2.000E-09 1.59E-07

CPU(s) 0.109 0.109 0.109 0.109 0.109 0.109
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Fig.3: (a) Exactsolution (b) Approximatesolution (c) Absoluteerror for?=0.1 with??=25 and h=0.04
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Fig.4: (a) Exactsolution (b) Approximatesolution (c) Absoluteerror for?= 1 with??=25 and h=0.04

Figs.(3-4) display the exact solution,approximate solution and absolute errors at time 0.1 and 1with N=25 and h=0.04.
Comparison of approximatesolution at x= 0.5, y= 0.5 for present study, MCBS-DQM and IEFGM are demonstrated in
Table 3. Table 4 shows the comparison between the present study and MCBS-DQM at time 0.1, 0.2, 0.3, 0.4, 0.5 and 5
with N=12 and h=1/12.

Example 3.Consider the equation (1.3) with h = % ,a=—1,r=48,8 =1l,and (x,y,0) = %\/sz +y(2y + 1) + 5. That is

the equation becomes.

pr =V?%(p?) + 9—16p_1 (1 — 48p), and has exact solution (x,y,t) = l\/Zx2 +yQy+1)+ g + 5. Compare with equation

4
(2.1), we have

9xy) ==, (3.15)
Flp] = (0P + (0)yy +2-p 72, (3.16)
Let& = 2x2 + y(2y + 1) + 5, we note that the highest derivative of p isn = 2 and t, = 0, then according to (2.5), we get
1
@G =p(6y,0=78 , (3.17)
1
a, = g(,y) +[Flpl], = (@0)xx + ((@)2)yy + 5= (@) M = -2, (3.18)
. _3
@y = [F'lpl], = Xto Bhmo By iy [00] (@) iy = =782 (3.19)

= 0l = Y D (e
i=0 Y xi=JyJ

2 k
* Zk:o Zr:o F(l)xi—jyj)'(pxk—ryr) [a0] (@)zi-ys (al)"k—ryr>

_ 1

" 288

&3, (3.20)

From equation (2.8), we get the analytical approximate solution

1., 11 1, -3¢2 1 . -3¢3
p(X,y,t)ZZzZ +ZE 2 t—mz 2;4‘%5 2;4‘"', (321)

Table 5: Comparison of absolute errors obtained byADM, VIMand present study for Example 3at t= 10.

xy) ADM]6] VIM]6] Present study
(-450,-450) 2.573384E-6 7.272155E-12 2.525523E-21
(-400,-400) 3.257144E-6 1.106995E-11 5.761320E-21
(-300,-300) 5.791548E-6 3.578650E-11 4.319163E-20
(-250,-250) 8.341020E-6 7.431441E-11 1.548500E-19
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(0,0) 8.094717E-1 1.777T7T76E-1 2.963822E-3
(50,50) 2.068923E-4 4.572776E-8 1.182434E-14
(100,100) 5.192803E-5 2.877083E-9 9.332434E-17
(200,200) 1.300298E-5 1.803953E-10 7.325588E-19
(350,350) 4.248496E-6 1.906919E-11 1.460245E-20
(500,500) 2.082251E-6 4.562573E-12 1.203501E-21

Table 6: Comparison of absolute errors obtained by ADM, VIM and present study for Example 3 at t= 20.

(xy) ADM]6] VIM]6] Present study
(-450,-450) 1.029354E-5 7.272155E-12 4.040827E-20
(-400,-400) 2.316619E-5 1.106995E-11 9.218078E-20
(-300,-300) 2.316619E-5 3.578650E-11 6.910615E-19
(-250,-250) 3.336408E-5 7.431441E-11 2.477577E-18

(0,0 3.254777 1.777776E-1 3.637376E-2

(50,50) 8.275692E-4 3.658223E-7 1.891451E-13
(100,100) 2.077121E-4 2.301665E-8 1.493103E-15
(200,200) 5.201193E-5 1.442949E-9 1.172077E-17
(350,350) 1.699398E-5 1.538449E-10 2.336381E-19
(500,500) 8.329005E-6 3.683809E-11 1.925597E-20

Table 7: Comparison of errors and CPU time between MCBS-DQM and present study for Example 3.

Method h,=h, Errors t=0.1 t=0.2 t=0.5
MCBS-DQM][16] 0.03 L, 6.43E-06 6.39E-06 6.36E-06
Lo 3.70E-05 3.69E-05 3.69E-05

CPU(s) 4.84 9.76 24.4
0.04 L, 9.46E-06 9.53E-06 9.56E-06
Lo 3.65E-05 3.65E-05 3.65E-05

CPU(s) 223 4.48 11.24
Present study 0.03 L, 5.70E-09 4.60E-08 7.11E-07
Lo 1.04E-08 8.24E-08 1.27E-06

CPU(s) 0.391 0.484 0.547
0.04 L, 5.82E-09 4.66E-08 7.20E-07
Lo 1.04E-08 8.24E-08 1.27E-06

CPU(s) 0.251 0.282 0.250
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Table 8: Comparison of errors and CPU timebetween MCBS-DQM and present study for Example 3 with h,=h, =1/12.

Method Errors t=5 t=10 t=15
MCBS-DQM]16] L, 2.71E-05 2.50E-05 2.33E-05
L. 3.64E-05 3.65E-05 3.65E-05
CPU(s) 12.14 30.22 45.67
Present study L, 1.78E-10 2.42E-10 3.62E-06
L 4.00E-10 6.00 E-10 3.64E-05
CPU(s) 1.749 1.641 1.532
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Fig.5: (a) Exactsolution (b) Approximatesolution (c) Absoluteerror for?= 10
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Fig.6: (a) Exactsolution (b) Approximatesolution (c) Absoluteerror for?= 20

Figs.(5-6) display the exact solution,approximate solution and absolute errors at time 10 and 20.Comparison of numerical
solution for the present study, ADM and VIM at time 10 and 20 respectivelyare demonstrated in Tables (5-6).The
comparison between the present study and MCBS-DQM are demonstrated in Table 7at time 0.1, 0.2 and 0.5 with
N=33,N=25, h=0.03 and h=0.04, and in Table 8 at time 5,10 and 15 with N=12and h=1/ 12.

The present method is perfect and givesa good approximate solutions. The above figures and tables show that this method
is efficientand has high accuracy. We get exact solution for examples 1 and 2 and approximate solutions for example 3. L,
L, for the series approximation solutions S, of the three test examples computed by

Lo = 0 S5 alpesace (e, ) = pagpron(h )

Lo, = max(|.0exact(hi 'hj) - papprox(hi :hj)D >

wherei, j = 0,1, ..., Nand pgpprox(x,¥,t) =S, = i a; (i—;
closer to the exact solution with very small CPU time at point (0.5,0.5) and times0.1,0.2,...,0.5 than IEFGM and MCBS-

DQM. Tables (2, 4, 8) illustrate the approximation solutions for the three testsand show that the L,, L, and CPU time for
new technique are smaller than MCBS-DQM with A ¢ = 0.0001 and h,= h), = 1/12. Also, for example 3 at time 10 and

Tables (1, 3) showthat the approximation solution Sg is
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20 Tables (5-6)documentingthat the new method have absolute errors smaller than ADM [4] and VIM [4]. Table 7
showthat L,, L., and CPUtime for approximation solution S, is better than MCBS-DQM with A t = 0.0001 and h,= h, =
0.03, 0.04 at time 0.1, 0.2 and 0.5. The series of approximation solutions in Tables (1-4,7,8)was taken with least n make
the results best than MCBS-DQM. Figures (1-2),(3-4) and (5-6) display that the approximate solutions Ss ,S5 and S; are
identical with exact solution for examples 1,2 and 3 at times{0.1, 0.5},{0.1,1}and {10, 20}respectively.The numerical
results show that the present method compared with other methods is the most efficient and the best, because it gives good
results with a few iteration of solutions and small errors.

4 Convergence Analyses

In this section, we study the analysis of convergencedepending on somedefinitions and theorems.
From equation (1.3) let

FIp) = F(p. prs Py P Pyy) = 552 + ZED 4 hp (1 = 7pf) @.1)
and by applying the current method we get

pl(x, y,t)—a0+a1t+a2 +a33l+ +an—'+ 4.2)
where

ao = po(%,5,0), a; = g(x,¥) + [Flpl] ,az = [F'lp]],, as = [F"[p]] > an = [F("‘”[p]]0 : (4.3)

Definition 1( Taylor’s Formula )
Let fbe a function with derivatives of all orders throughout some interval containing aas an interior point. Then the Taylor
series generated by fatx = ais

f@) = f@ + F/ @0 =) + D (x — a)? 4+ L9 (i — ayn 4 R, (x), (4.4)

f(n+1) )

whereR, (x) = D)

(x — a)™*for some ¢ between a and x.

Definition 2 (Radius of Convergence)

Suppose that a,, # 0 for all sufficiently large nand the R = lim

n—-oo

- exists or diverges to infinity. Then the power
n+1

seriesY.n=q A, (x — ¢)™has radius of convergence R.
Now, we will state theorem for convergence biological population model.

Theorem 4.1 ( Convergence of Biological Population Model )
If p(x,y, t) have (n + 1) times differentiable with respect to t and lim |F ™[p,] (n+1)l| = Ofor some ¢ between Oand ¢,

n—oo
i
then the approximate solution )72, a; i—] of the biological population model in equation (1.3) is convergent to exact
solution p(x, y, t).

Proof: Sincep(x,y,t) have (n + 1) times differentiable with respect to t and lim |F ™p.] (n+1),| = Othen

n+1 "

lim |F¢ [pc]( T = lim (p(x yt) — Z —) =0
p(x,y,t) = lim Z?:oaiti_: =0
w t

Py, t) = XiZo i3 - o
Theorem 4.3 (The Ratio Test)
Let Y. b,be a series with positive terms and suppose thatlim 221 = = p, then

n—oo bp

(a) The series converges if p < 1,
(b) The series diverges if p > lor p is infinite,
(c) The test is inconclusive if p = 1.

We will determine the radius of convergence to the series approximation solutions by the following theorem.
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Theorem 4.4 (Radius of Convergence to Biological Population Model)
The series approximation solutions of the biological population model};;2, a; %have radius of convergence R =

[
(al 1%, Ai+1
(a) IfR = oo, then for all ¢,

(b) If0 < R < o, then for all|t| < R,

(¢) IfR =0, then only for t = 0.

lim

i—oo |

(i + 1) hold one of the following cases ;

|—11m

(it
ARGl aipa| el _ It
Proof: Letp = lim — = lim |2 =
i—oo |ait-_| i»ool a; li+1 R
1A

then by theorem 4.3 the series converges if p < 1 = %l < 1= [t| < R,so, the radius of convergence is R, therefore, if
R = oo, then the series approximation solutions converges for all t, if 0 < R < oo, then the series converges for all|t| < R
and if R = 0, then the seriesapproximation solutions converges only for t = 0.
We have to know if the series approximation solutionsconverges attheendpointst = £R, to do this we must check it
directly.
Now Let’s find the convergence analysis for the above test problems .Clearly that the exact solutions p for the three tests
have (n + 1) times differentiable with respect to t and

<m lim —

(n) n+1
llm F [pC] (n+1)! n-ooo (n+1)!

hence,the seriesapproximation solution converges to the exact solution functionfor the three tests.
To find the radius of convergence

= 0, where m = 0,

In the first example:

1,1 1 12 - 1(%)1'
p(x,y.t)=$+g?t+;§; EEZ— = XiZo &0 (4.6)
26)
lim |—- (i+1)= llm Sl G+ 1) = llm 5(+1) = oo, 4.7)
i—oo 1qjyq
& 5
hence |t| < .
The second example
t2 ¢3 1yl
px,y,t) =& ¢ t+f——f—+'"= iz0 &7 “4.7)
lim |—= (i+1) =lim —1 (1+1)—11m(l+1)—oo 4.8)
i»oo lAjyq i—>o0 —
hence |t] < .
The third example
1.1 1 _l 221 53
p(x,y,t):—Ez+—E _EE 2t 2ot
1.t _1 o (-DI™ 2j 1) (A-20) i
=8+ E P ey, S H‘1 = - (4.9)
1.,=
el = lgi_ y3: (4.10)
! 24‘E 2
ot
b |2 = [-22—| = 12¢ (4.11)
a; ——E_El
144 2!
O i @iy £ .
; 24 =1 6 ; — 1 ;
C}Lrg G t+1)= lll)rg i @ (—12—2i) i+1)= lll)rg (2i6—1) g (+1)
6 (i+1) e
= lll)rorg T I)E 3¢ (4.12)
R = min(a,b,c) =3¢ (4.13)

hence |t] < 3&=3(2x%+ y(2y + 1) + 5).
Letx =y =0 = |t| < 15,
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ift = 15 = N2, a5 = -5 +—5“15+2°° - 2)4 Mz 22s - wljl

= 0.84— 007+003—002+ (4.14)
ift = 20 = X2, q; - 52+—5 220+2°° - 2)4 Mz 22s = 20231
— 0.93 =012 +0.08 — 0.07 4 - (4.15)

the equations (4.14) and (4.15) is convergent alternating series since each term is smaller in absolute value than the one
preceding it and as igoes to oo, the ith term converges to 0.Therefore,the series approximation solution converges att = 15
and 20,as well as between them. From the above proofs and their application,we conclude that the convergent of analytical
approximate solutions obtained by thepresent method is valid.

5 Conclusions

In this paper, we useda new simulation scheme for solving two-dimensional biological population model. The numerical
results of three test problems confirm that the present method is an efficient method with good convergence, high accuracy
with small absoluteerrors,L,, L., and CPU time. This method can be used to solve a nonlinear partial differential equations
because it has the best formula needed to derivatives only; so that, its application is easy compared with difficult
computation of Adomian decomposition method which needs to apply Adomian polynomial. The results of the present
method are the best in measurements of errors and CPU time with good convergent of solutions. The computations are done
using Maplel8.
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