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In this paper, a perturbation-iteration algorithm is used to solve nonlinear differential 
equations which represent the steady incompressible flow problem of a fourth grade 
non-Newtonian fluid between two stationary parallel plates in the presence of 
magnetic field. The governing partial differential equations have been transformed 
into an ordinary differential equation, before being solved. The numerical results have 
been computed and compared with the results of other methods. Moreover, the 
convergence of the numerical results has been tested for various values of physical 
parameters. The influence of some physical parameters such as the slip parameter, 
non-Newtonian parameter and magnetic field parameter on velocity is explained. The 
results show the reliability and efficiency of this analytical method.  
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1. Introduction 
 

In recent years, non-Newtonian fluids have received a great interest in scientific research because 
of their great importance in technical and industrial applications. Non-Newtonian fluids are fluids 
that do not follow Newton’s law and change their viscosity according to the forces that influence 
them, including shampoo, blood, tomato ketchup, honey, mud, paints, plastics and polymer melts. 
The non-Newtonian fluids may be classified as fluids for which the shear stress depends on the shear 
rate only or shear rate and time fluids which possess both elastic and viscous properties. It cannot be 
described as a single model because they are complex fluids. Therefore, several models describe the 
proposed behaviour of non-Newtonian fluids. Amongst these the models of non-Newtonian fluids 
are the second grade, third grade and fourth grade. It is worth to mention that the second grade fluid 
is used to predict the normal stress differences, but it does not distinguish between thick and thin 
shear because the viscosity of the shear is fixed. So some experiments may be described through 
fluids of three or four grade. 

Many researchers have dealt with various cases of second and third grade fluid flow successfully 
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using analytical and numerical methods [1-9]. The researchers were also interested in analyzing and 
studying the problems of the fourth grade fluid flow as a general class of second and third grade 
fluids. Hayat et al., [10], the finite difference approximate was used to solve the steady flow of an 
incompressible fourth grade fluid in the presence of magnetic field between parallel plates with one 
plate at rest and the other moving parallel to it at constant speed with a suction velocity normal to 
the plates. The homotopy analysis method (HAM) was used by Sajid et al., [11] to investigate the 
steady flow of fourth grade fluid past a porous plate. Siddiqui et al., [12], the homotopy perturbation 
method (HPM) and the traditional perturbation method were used to solve the non-linear equations 
modelling thin film flow of fourth grade fluid falling on the outer surface of an infinitely long vertical 
cylinder. Hayat and Sajid [13], a comparison between the result of HAM and HPM was made for 
solving thin film flow of a fourth grade fluid down a vertical cylinder, and the results revealed that 
HAM is very simple and effective and provides a simple way to control and adjust the convergence 
region. The finite difference approximation, Wanga and Wu [14], was also used for solving the 
unsteady incompressible flow of  fourth-grade fluid which induced by a periodically oscillating two 
dimensional in a semi-infinite porous plate with suction/blowing within a uniform magnetic field.  

Moreover, the optimal homotopy asymptotic method (OHAM) was proposed by Marinca [15] to 
find the approximate analytical solution of the steady flow problem of a fourth-grade fluid past a 
porous plate. HPM and OHAM were also utilised by Islam et al., [16] to solve the steady flow of fourth-
grade fluid when slippage between the plate. Forward and backward wave-front type travelling wave 
solutions had been constructed by Aziz and Mahomed [17] to study the problem of unsteady 
unidirectional flow of fourth grade fluid bounded by a suddenly moving the rigid plate. The results of 
the variational iteration method (VIM) and HAM were compared with the results of Adomians 
decomposition method (ADM) by Abbasi et al., [18] for solving the steady flow of fourth grade fluid 
between two stationary parallel plates. The study of the incompressible fully developed flow of 
fourth grade fluid in a flat channel under an externally applied magnetic field with taking slip 
conditions at the wall of the channel was presented by Moakher et al., [19, 20] where the collocation 
method (CM) and least square method (LSM) respectively, had been applied to solve this problem. 
The optimal auxiliary functions method (OAFM) was suggested to investigate the problem of thin film 
flow of a fourth grade fluid dawn a long vertical cylinder by Marinca [21]. The problem of peristaltic 
transport of an incompressible non-Newtonian, fourth grade fluid  in a tapered asymmetric channel 
was discussed by Kothandapani et al., [22] under long-wavelength and low-Reynolds number 
assumptions. Regular perturbation technique was used to find the series solutions for stream 
function, axial velocity and pressure gradient in this problem. Khan et al., [23], the boundary layer 
flow problem of a fourth grade fluid and heat transfer over an exponential stretching sheet was 
investigated by using HAM and the Keller-box technique. Ali et al., [24], the combined effects of heat 
and mass transfer were studied the unsteady flow of a fourth-grade fluid over an oscillating vertical 
porous plate in the presence of uniform magnetic field by using HAM. 

The main objective of this study is to solve the steady flow problem of fourth grade fluid between 
two stationary parallel plates with magnetic field effect. The differential equations that is generated 
by the fourth grade fluid flow are considered which is the generalised formula of the second and third 
grade fluid flow. This problem includes highly nonlinear equations and their order is higher than that 
of the classical Navier-Stokes equations. In addition, the non-Newtonian fluid flow problems of the 
fourth grade require additional conditions at the boundary. For these reasons, finding exact solutions 
to these problems is very difficult, so we utilised in this study a semi analytical technique which is the 
perturbation-iteration algorithm (PIA) [25-39]. Although many semi analytical methods are 
presented in the literature for solving this problem, but here we are applied PIA for some reasons. 
Firstly, it can be applied to the problem directly without using linearization, discretization or any 
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transformation. Secondly, it does not need to install a small auxiliary parameter in the equations, to 
reverse other perturbation methods which their solutions are restricted by the validity range of 
physical parameters. Moreover, this method was not previously used to solve this problem. In view 
of this we have established the approximate analytic solution based on the PIA. 

The remaining parts of this study are as follows: In Section 2, the flow problem of fourth grade 
fluid between two stationary parallel plates in a magnetic field is formulated, and nonlinear ordinary 
differential equation of this problem is derived. The Mathematical properties of PIA are presented 
and applied to solve our problem and then we discuss the convergence of the resulted solutions, in 
Section 3. The numerical results are presented and discussed in Section 4. Finally, in Section 5, some 
conclusions were presented. 
 
2. Mathematical Formulation  
 

In this paper, we consider the incompressible flow of a fourth grade fluid between two stationary 
parallel plates in a magnetic field. The fluid motion between the two plates is towards 𝑥, driven by 
the constant pressure gradient and the distance between the two plates is 2𝑑, as shown in Figure 1.  

 
Fig. 1. Diagram of the physical system of flow problem 

 
The governing equations of the incompressible flow of 𝑛-th grade fluid between two stationary 

parallel plates in a magnetic field are  
 
𝛻 ⋅  𝑉 = 0,

𝜌 
𝐷𝑉

𝐷𝑡
= 𝛻 ⋅  𝑇 + 𝑱 × 𝑩,

}                    (1) 

 
where 𝑉 is the velocity vector, 𝜌 is the constant density, ∇ is the Nabla operator, 𝑇 is the stress tensor, 
𝑱 is the electric current density and 𝑩 is the total magnetic field such that 𝑱 × 𝑩 = 𝜎 (𝑉 ×  𝑩) × 𝑩, 

𝜎 is the electrical conductivity of the fluid, 𝑩 = (0, 𝐵0, 0), and 
𝐷()

𝐷𝑡
=

𝑑()

𝑑𝑡
+ (𝑉 ∙ ∇)( ) denotes the 
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material derivative. The stress tensor 𝑇 defining a 𝑛-grade fluid is given by 
 
𝑇 = −𝑝 𝐼 + ∑𝑛𝑖=1 𝑆𝑖 ,                 (2) 
 
if 𝑛 = 4 then the system Eq. (1) give the fourth grade fluid as , 
 
𝑆1 = 𝜇 𝐴1,

𝑆2 = 𝛼1 𝐴2 + 𝛼2 𝐴1
2,

𝑆3 = 𝛽1 𝐴3 + 𝛽2 (𝐴1 𝐴2 + 𝐴2 𝐴1) + 𝛽3 (𝑡𝑟 (𝐴1)
2) 𝐴1,

𝑆4 = 𝛾1 𝐴4 + 𝛾2 (𝐴3 𝐴1 + 𝐴1 𝐴3) + 𝛾3 𝐴2
2 + 𝛾4(𝐴2 𝐴1

2 + 𝐴1
2𝐴2) + 𝛾5(𝑡𝑟𝐴2)𝐴2

+𝛾6 (𝑡𝑟 𝐴2) 𝐴1
2 + (𝛾7 (𝑡𝑟 𝐴3) + 𝛾8 (𝑡𝑟 (𝐴2 𝐴1))) 𝐴1, }

 
 

 
 

     (3) 

 
where 𝑝 is the pressure, 𝐼 is the identity tensor, 𝜇, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛽3, 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5, 𝛾6, 𝛾7 and 𝛾8 
are material constants, and 
 
 𝐴0 = 𝐼,                                                                                     

𝐴𝑛 =
𝑑 𝐴𝑛−1

𝑑 𝑡
+ 𝐴𝑛−1 (𝛻 𝑉) + (𝛻 𝑉)

𝑡  𝐴𝑛−1,        𝑛 ⩾ 1.
}        (4) 

 
We note that the third grade fluid can be inferred when 𝑛 = 3 in Eq. (2), and this model reduces 

to a second grade fluid when 𝑛 = 2 in Eq. (2), while the classical Navier-Stokes fluid can be gotten 
when 𝑛 = 1 in Eq. (2). 

We consider the velocity field of the form 𝑉 = (𝑢(𝑦),0,0) and the components of 𝑇 are  
 

𝑇𝑥𝑥 = −𝑝 + 𝛼2 (
𝑑𝑢

𝑑𝑦
)2 + 2 𝛾6 (

𝑑𝑢

𝑑𝑦
)4,                                                          

𝑇𝑥𝑦 = 𝜇 
𝑑𝑢

𝑑𝑦
+ 2 (𝛽2 + 𝛽3) (

𝑑𝑢

𝑑𝑦
)3,                                                              

𝑇𝑦𝑥 = 𝜇 
𝑑𝑢

𝑑𝑦
+ 2 (𝛽2 + 𝛽3) (

𝑑𝑢

𝑑𝑦
)3,                                                              

𝑇𝑦𝑦 = −𝑝 + (2 𝛼1 + 𝛼2) (
𝑑𝑢

𝑑𝑦
)2 + 4 (𝛾3 + 𝛾4 + 𝛾5 + 0.5 𝛾6) (

𝑑𝑢

𝑑𝑦
)4,

𝑇𝑧𝑧 = −𝑝, 𝑇𝑥𝑧 = 𝑇𝑦𝑧 = 𝑇𝑧𝑥 = 𝑇𝑧𝑦 = 0.                                             
     }

 
 
 
 

 
 
 
 

      (5) 

 
The 𝑥-component of the momentum Eq. (1) takes the form 
 

−
𝑑𝑝

𝑑𝑥
+ 𝜇 

𝑑2𝑢

𝑑𝑦2
+ 6(𝛽2 + 𝛽3) (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
− 𝜎 𝐵0

2 𝑢(𝑦) = 0,         (6) 

 
the 𝑦-component has the form 
 

−
𝑑𝑝

𝑑𝑦
+ (2 𝛼1 + 𝛼2)

𝑑

𝑑𝑦
(
𝑑𝑢

𝑑𝑦
)
2

+ 4 (𝛾3 + 𝛾4 + 𝛾5 + 0.5𝛾6)
𝑑

𝑑𝑦
(
𝑑𝑢

𝑑𝑦
)
4

= 0,         (7) 

 
and 𝑧-component has the form 
 

−
𝑑𝑝

𝑑𝑧
= 0.               (8) 
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By integrating Eq. (7) with respect to 𝑦, we arrive at  
 

 𝑝∗ = −𝑝 + (2 𝛼1 + 𝛼2) (
𝑑𝑢

𝑑𝑦
)
2

+ 4 (𝛾3 + 𝛾4 + 𝛾5 + 0.5 𝛾6) (
𝑑𝑢

𝑑𝑦
)
4

        (9) 

 

Since 
𝑑𝑝∗

𝑑𝑦
= 0, and 

𝑑𝑝∗

𝑑𝑧
= 0, then 𝑝∗ = 𝑝∗(𝑥). Then, the Eq. (6), (7) and (8) can reduce to single 

equation  
 

𝜇 (
𝑑2𝑢

𝑑𝑦2
) + 6 𝛽 (

𝑑𝑢

𝑑𝑦
)
2

(
𝑑2𝑢

𝑑𝑦2
) − 𝜎 𝐵0

2 𝑢(𝑦) = 𝐴 ,                    (10) 

 

where 𝛽 = 𝛽2 + 𝛽3 and 𝐴 =
𝑑𝑝∗

𝑑𝑥
. Therefore, the problem is reduced to solve the second-order 

nonlinear ordinary differential Eq. (10) with following boundary conditions  
 
𝑑𝑢

𝑑𝑦
|𝑦=0 = 0    and    

𝑑𝑢

𝑑𝑦
|𝑦=𝑑 = −𝜆 𝑢(𝑑)                     (11) 

 
The above equations are conveniently non-dimensional with the scales  
 

𝜂 =
𝑦

𝑑
,        𝑈(𝜂) =

𝜇 𝑢(𝑦)

𝐴 𝑑2
,        𝑁𝑓 =

𝐴2 𝑑2 𝛽

𝜇3
,        𝐻𝑎 = 𝐵0 𝑑√

𝜎

𝜇
 ,                  (12) 

 
Eq. (10) and (11) in non-dimensional form become,  
 
𝑑2𝑈

𝑑𝜂2
+ 6 𝑁𝑓  (

𝑑𝑈

𝑑𝜂
)
2

 
𝑑2𝑈

𝑑𝜂2
−𝐻𝑎2 𝑈 − 1 = 0,                     (13) 

 
with 
  
𝑑𝑈

𝑑𝜂
|𝜂=0 = 0    and    

𝑑𝑈

𝑑𝜂
|𝜂=1 = −𝜆 𝑈(1)                     (14) 

 
3. Perturbation-Iteration Algorithm (PIA) 
 

PIA is a combination of perturbation expansions and Taylor series expansions to construct an 
iteration scheme. It is obtained by taking different numbers of terms in the perturbation expansions 
and different orders of correction terms in the Taylor series expansions. Therefore, the perturbation 
iteration algorithm is called PIA(𝑚, 𝑛) where the 𝑚 is the number of the correction terms in the 
perturbation expansion, and 𝑛 is the highest order derivative term in the Taylor series such that 𝑚 
should always be less than or equal to 𝑛. 

In order to obtain approximate analytical solutions for the incompressible fluid flow of a fourth 
grade fluid through the channel with slip condition, PIA is applied to system (13) and (14). Thus, we 
consider the following equation 
  
𝐺(𝑈,𝑈′, 𝑈′′, 𝜖) = 𝑈′′ + 6 𝜖 𝑁𝑓  (𝑈′)

2 𝑈′′ − 𝐻𝑎2 𝑈 − 1 = 0,                    (15) 

                     

where 𝜖 is a small perturbation parameter, 𝑈′ =
𝑑𝑈

𝑑𝜂
 and 𝑈′′ =

𝑑2𝑈

𝑑𝜂2
. We also define the following 
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perturbation expansions with only one correction term 
 
𝑈𝑛+1 = 𝑈𝑛 + 𝜖(𝑈𝑐)𝑛 ,                       (16) 
                                                                                                                      
where 𝑛 represents the 𝑛th iteration and 𝑈𝑐  is the correction terms in the perturbation expansion. 
By substituting (16) into (15) and expanding the resulted equations in a Taylor series with first order 
derivative terms for apply PIA (1,1) about 𝜖 = 0, yields  
 
𝐺(𝑈𝑛 , 𝑈𝑛

′ , 𝑈𝑛
′′, 0) + 𝜖 [𝐺𝑈𝑛+1  (𝑈𝑐)𝑛 + 𝐺𝑈𝑛+1′ (𝑈𝑐)𝑛

′  + 𝐺𝑈𝑛+1′′ (𝑈𝑐)𝑛
′′  + 𝐺𝜖] = 0,                (17) 

 
such that 
 
𝐺(𝑈𝑛 , 𝑈𝑛

′ , 𝑈𝑛
′′, 0) = 𝑈𝑛

′′ −𝐻𝑎2 𝑈𝑛 − 1,

𝐺𝑈𝑛+1 = −𝐻𝑎
2,                                          

𝐺𝑈𝑛+1′ = 12 𝜖 𝑁𝑓 𝑈𝑛+1
′  𝑈𝑛+1

′′  ,                 

𝐺𝑈𝑛+1′′ = 1 + 6 𝜖 𝑁𝑓 (𝑈𝑛+1
′ )2,                  

𝐺𝜖 = 6 𝑁𝑓  (𝑈𝑛+1
′ )2 𝑈𝑛+1

′′  .                       }
 
 

 
 

                    (18) 

  
By calculating all derivatives at 𝜖 = 0 and substituting the results into (17) yields the following linear 
ordinary differential equations  
 

(𝑈𝑐)𝑛
′′ −𝐻𝑎2 (𝑈𝑐)𝑛 = −

1

𝜖
 (𝑈𝑛

′′ −𝐻𝑎2 𝑈𝑛 − 1) − 6 𝑁𝑓  (𝑈𝑛
′ )2 𝑈𝑛

′′                      (19) 

 
We used an initial guesse 𝑈(𝜂) = 0 which satisfies the boundary conditions (14) to find iterative 
solutions for this equation at 𝜖 = 1. The iterative solutions by PIA (1,1) are 
 

𝑈1(𝜂) =
𝜆 cosh(𝐻𝑎 𝜂)

𝐻𝑎2 (𝐻𝑎 sinh(𝐻𝑎) + 𝜆 cosh(𝐻𝑎))
−

1

𝐻𝑎2
 , 

  

𝑈2(𝜂) = 𝑈1(𝜂) +
3

8
 𝜆3 𝑁𝑓  [(−2 (𝐻𝑎 𝑠𝑖𝑛ℎ(𝐻𝑎) + 𝜆 𝑐𝑜𝑠ℎ(𝐻𝑎)) (−2 𝑐𝑜𝑠ℎ

4(𝐻𝑎 𝜂) −

2 𝑠𝑖𝑛ℎ(𝐻𝑎 𝜂) 𝑐𝑜𝑠ℎ3(𝐻𝑎 𝜂) + 4 𝑐𝑜𝑠ℎ2(𝐻𝑎 𝜂) +
1

2
 𝑠𝑖𝑛ℎ(2 𝐻𝑎 𝜂)) + (−2 𝜆 𝑐𝑜𝑠ℎ4(𝐻𝑎) −

6 𝑠𝑖𝑛ℎ(𝐻𝑎) (𝐻𝑎 +
1

3
𝜆) 𝑐𝑜𝑠ℎ3(𝐻𝑎) + (−6 𝐻𝑎 𝑠𝑖𝑛ℎ2(𝐻𝑎) − 3 𝐻𝑎 + 4 𝜆) 𝑐𝑜𝑠ℎ2(𝐻𝑎) +

7

2
 (𝐻𝑎 +

1

7
 𝜆) 𝑠𝑖𝑛ℎ(2 𝐻𝑎) + 𝐻𝑎 (𝑠𝑖𝑛ℎ2(𝐻𝑎) + (𝜂 − 1) (𝐻𝑎 − 𝜆) + 1)) 𝑒−𝐻𝑎 − ((

1

4
 (3 𝐻𝑎 −

𝜆)) (𝑠𝑖𝑛ℎ(4 𝐻𝑎) − 𝑐𝑜𝑠ℎ(4 𝐻𝑎)) − (𝐻𝑎 + 𝜆) 𝑐𝑜𝑠ℎ(2 𝐻𝑎) − 2 𝐻𝑎 𝑠𝑖𝑛ℎ(2 𝐻𝑎) + (𝜂 + 1) (𝐻𝑎 +

𝜆) 𝐻𝑎 −
1

4
 𝐻𝑎 −

5

4
 𝜆) 𝑒𝐻𝑎) 𝑒−𝐻𝑎 𝜂 − (2 (𝐻𝑎 𝑠𝑖𝑛ℎ(𝐻𝑎) + 𝜆 𝑐𝑜𝑠ℎ(𝐻𝑎))) (𝑐𝑜𝑠ℎ(2 𝐻𝑎 𝜂) +

1

4
 (𝑠𝑖𝑛ℎ(4 𝐻𝑎 𝜂) − 𝑐𝑜𝑠ℎ(4 𝐻𝑎 𝜂))) + 𝑒−𝐻𝑎 (−2𝜆 𝑐𝑜𝑠ℎ4(𝐻𝑎) − 6 𝑠𝑖𝑛ℎ(𝐻𝑎) (𝐻𝑎 +

1

3
 𝜆) 𝑐𝑜𝑠ℎ(𝐻𝑎)3 + (−6 𝐻𝑎 𝑠𝑖𝑛ℎ2(𝐻𝑎) − 3 𝐻𝑎 + 4 𝜆) 𝑐𝑜𝑠ℎ2(𝐻𝑎) +

7

2
 (𝐻𝑎 +

1

7
 𝜆) 𝑠𝑖𝑛ℎ(2 𝐻𝑎) +

𝐻𝑎 𝑠𝑖𝑛ℎ2(𝐻𝑎) + (
9

4
− (𝑥 + 1) (𝐻𝑎 − 𝜆)) 𝐻𝑎 −

5

4
 𝜆) + 𝑒𝐻𝑎 (−

1

4
 (3 𝐻𝑎 − 𝜆) (𝑠𝑖𝑛ℎ(4 𝐻𝑎) −

𝑐𝑜𝑠ℎ(4 𝐻𝑎)) + (𝐻𝑎 + 𝜆) 𝑐𝑜𝑠ℎ(2 𝐻𝑎) + (2 𝑠𝑖𝑛ℎ(2 𝐻𝑎) + (𝜂 − 1) (𝐻𝑎 + 𝜆) − 1) 𝐻𝑎) 𝑒𝐻𝑎 𝜂] ÷
[((3 𝐻𝑎2 𝜆 + 𝜆3) 𝑐𝑜𝑠ℎ3(𝐻𝑎) + 𝐻𝑎 𝑠𝑖𝑛ℎ(𝐻𝑎) (𝐻𝑎2 + 3 𝜆2) 𝑐𝑜𝑠ℎ2(𝐻𝑎) − 3 𝐻𝑎2 𝜆 𝑐𝑜𝑠ℎ(𝐻𝑎) −
𝐻𝑎3 𝑠𝑖𝑛ℎ(𝐻𝑎)) (2 (𝐻𝑎 𝑠𝑖𝑛ℎ(𝐻𝑎) + 𝜆 𝑐𝑜𝑠ℎ(𝐻𝑎))) 𝐻𝑎4]                     (20) 
    
To test the convergence of the PIA, we suppose that  
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𝑈0(𝜂) = 𝜁0,                                                                                                        
𝑈1(𝜂) = 𝑈0(𝜂) + 𝜖 (𝑈𝑐)0(𝜂) = 𝜁0 + 𝜁1,                                                    
𝑈2(𝜂) = 𝑈1(𝜂) + 𝜖 (𝑈𝑐)1(𝜂) = 𝜁0 + 𝜁1 + 𝜁2,                                           
 ⋮                                                                                                                        

𝑈𝑛(𝜂) = 𝑈𝑛−1(𝜂) + 𝜖 (𝑈𝑐)𝑛−1(𝜂) = 𝜁0 + 𝜁1 + 𝜁2+. . . +𝜁𝑛 = ∑
𝑛
𝑘=0 𝜁𝑘 .}

 
 

 
 

                (21) 

 
Now, by following the same method in [37] which can be summarized by the following definition 
 
Definition 3.1  Let  
 

𝛿𝑛 = {
∥𝜁𝑛+1∥

∥𝜁𝑛∥
, ∥ 𝜁𝑛 ∥≠ 0,

0, ∥ 𝜁𝑛 ∥= 0,
                             (22) 

 
the series solutions ∑∞𝑘=0 𝜁𝑘 by perturbation iteration method converges to the exact solution if there 
is 𝛿𝑛 such that 0 < 𝛿𝑛 < 1 for all 𝑛 ∈ ℕ.  
 
For example, 
if 𝜆 = 0.4, 𝐻𝑎 = 1 and 𝑁𝑓 = 1 for all 𝜂 in the domain [0,1] 

then 𝛿0 = 0,                      𝛿1 = 0.03426861579, 
if 𝜆 = 0.9, 𝐻𝑎 = 1.5 and 𝑁𝑓 = 0.3 

then 𝛿0 = 0,                      𝛿1 = 0.007529515923, 
if 𝜆 = 0.5, 𝐻𝑎 = 2 and 𝑁𝑓 = 0.1  

then 𝛿0 = 0,                      𝛿1 = 0.000191508932, 
and if 𝜆 = 0.5, 𝐻𝑎 = 1 and 𝑁𝑓 = 0.9,  

then 𝛿0 = 0,                      𝛿1 = 0.04642964414. 
We note that the convergence condition is valid for different values of physical parameters. 
 
4. Results and Discussion 
 

In this section, we focus on comparing the results of the analytical approximate solution obtained 
by a perturbation-iteration algorithm with the results of other studies for the problem of the steady 
incompressible flow of fourth grade fluid between two stationary parallel plates in the presence of 

magnetic field effect. We show the effect of some physical parameters on the computed results in 
the domain [0,1]. In Table 1, the values of computing velocity 𝑈(𝜂) by PIA are compared with the 
results that obtained by Moakher et al., [19, 20] by applying the collocation method and least square 
method, respectively. The calculation time which is required to generate these solutions was 0.046s. 
We note that PIA gives results close to other results for the present problem. The results which are 
obtained from applying PIA are illustrated in Figure 2 for different values of active parameters. We 
note that, the values of 𝑈(𝜂) decrease and the values of 𝑈′(𝜂) increase from 𝜂 = 0 to 𝜂 = 1. Figure 
3 shows the inverse relationship between the velocity and the magnetic parameter 𝐻𝑎, where the 
value of velocity decreases by increasing the value of the magnetic parameter, because the applied 
magnetic field affects in the form of Lorentz force thereby reduces the velocity value. In Figure 4, the 
variation of non-Newtonian parameter 𝑁𝑓  on the velocity is described at 𝜆 = 1 and 𝐻𝑎 = 1. The 

effect of the slip parameter 𝜆 on the velocity 𝑈(𝜂) is depicted in Figure 5 at 𝑁𝑓 = 0.5 and 𝐻𝑎 = 1.5. 

Also it is observed from this figure that the velocity decrease with increasing the slip parameter. The 
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main reason for this is the increasing of slip parameter some part of fluid molecules strike solid 
surface and reflected diffusely increases then velocity decreases. 
 

Table 1 
Comparison of the present results of PIA with results 
of CM [19] and LSM [20] for 𝑈(𝜂) at 𝜆 = 0.4, 𝐻𝑎 =
1 and 𝑁𝑓 = 1 

𝜼 PIA CM [19] LSM [20] 

0 -0.7541296359 -0.755435424 -0.756148161 
0.05 -0.7538222689 -0.755135498 - 
0.10 -0.7528998171 -0.754233549 -0.754928597 
0.15 -0.7513612403 -0.755135498  
0.20 -0.7492048374 -0.750610552 -0.751266500 
0.25 -0.7464282942 -0.747882989  
0.30 -0.7430287564 -0.744540374 -0.745151678 
0.35 -0.7390029224 -0.740579449 -0.741169625 
0.40 -0.7343471653 -0.735996956 -0.736567863 
0.45 -0.7290576822 -0.730789639  
0.50 -0.7231306774 -0.724954241 -0.725493618 
0.55 -0.7165625833 -0.718487503 -0.719014744 
0.60 -0.7093503270 -0.711386168 -0.711903466 
0.65 -0.7014916454 -0.703646980 -0.704156173 
0.70 -0.6929854610 -0.695266681 -0.704156173 
0.75 -0.6838323255 -0.686242013 -0.686738689 
0.80 -0.6740349439 -0.676569720 -0.677060964 
0.85 -0.6635987899 -0.666246544 -0.666732216 
0.90 -0.6525328333 -0.6552692277 -0.655748735 
0.95 -0.6408503887 -0.6436345127 -0.644106858 
1.00 -0.6285701164 -0.631339143 -0.631802927 

 

 
(a) Ha= 1,  𝑁𝑓 = 1, , 𝜆= 0.5 
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 (b) Ha= 1.5,  𝑁𝑓  = 0.3,   𝜆= 0.9 

 
Fig. 2. The result obtained by PIA 

    
 

 
Fig. 3. The approximate analytical solution of velocities in 
different 𝐻𝑎 number 
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Fig. 4. The approximate analytical solution of velocities in 
different 𝑁𝑓  number 

 

 
Fig. 5. The approximate analytical solution of velocities in 
different 𝜆 number 

 
4. Conclusions 
 

In this paper, perturbation-iteration algorithm has been used as semi analytical technique to solve 
the problem of steady incompressible flow of a fourth grade fluid between two stationary parallel 
plates in the presence of magnetic field. The numerical results of the proposed method are calculated 
and compared with the results of previous work. The effects of the slip parameter, the non-
Newtonian parameter and the magnetic field parameter on the velocity have been investigated. The 
main conclusions are as follows. 
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i. The results of  PIA are close to the results of the other methods.  
ii. PIA gives a series of convergent solutions for all values of physical parameters which are used 

in this problem. Also, this method is fast in calculating results. Therefore, this method can be 
considered as good and effective technique for solving the problems of the flow of non-
Newtonian fluid.  

iii. The values of 𝑈(𝜂) are decreasing and the values of 𝑈′(𝜂) are increasing in the domain [0,1].  
iv. The increase in the value of the slip parameter, the non-Newtonian parameter and the 

magnetic field parameter has an opposite effect on the velocity 𝑈(𝜂).  
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