

exchange

Objectives

- Composition of air in different parts of respiratory system and difference in the composition of atmospheric air and alveolar air
- Factors affecting diffusion of gases through respiratory membrane
- Diffusion limited and perfusion limited gas exchange
- Definition of diffusion capacity, the difference between the diffusion capacity of O_2 and that of CO_2 in the lungs.
- Effect of V/Q on alveolar gas concentration

Gas exchange

- Is a continuous process
- Occurs through alveolo-capillary membrane by simple diffusion due to differences in partial pressure

Composition of air in different parts of respiratory system

Pressure mm Hg	Dry atmosph. air	Inspired air	Dead space air	Alveolar air
PO ₂	160	0.21 ×754 = <mark>158</mark>	0.21×713= 149.7	100
PCO ₂	0.3	0.004 ×754= 0.3	0.004 × 713= <mark>0.3</mark>	40
PH ₂ O		5.7	47	47
PN ₂	600	0.79×754= <mark>596</mark>	0.79 × 713= 563	573
Total	760	760	760	760

Reasons for the Difference in the Composition of Atmospheric Air and Alveolar Air

- Constant absorption of O₂ from alveoli to pulmonary capillaries & diffusion of CO₂ from pulmonary capillaries to alveoli.
- Humidification of atmospheric air as it passes through the respiratory passages leads to dilution of gases.
- Partial replacement of alveolar air by atmospheric air with each breath.

Mechanisms by which Composition of Alveolar Air is Kept Constant (Po₂ = 100mHg, Pco₂ = 40mHg)

1) By proper ventilation and perfusion of lung:

- O₂ continuously diffuses out of the alveoli into the blood stream and CO₂ continuously diffuses into the alveoli from blood
- Inspired air mixes with alveolar air, replacing the O₂ and diluting the CO₂.
- 2) Because of FRC of about 2 L at the end of expiration, 350 mL of inspired air or expired air has little effect on PO_2 and PCO_2 of alveolar air and alveolar gas composition remains constant.
- 3) Central and peripheral control mechanisms also operate to maintain alveolar gas composition constant.

Diffusion of gases through Respiratory Membrane Layers of the respiratory membrane

Factors that affect rate of gas diffusion through the respiratory membrane

1) Thickness of respiratory membrane

- 2 Factors increases the rate of diffusion through the respiratory membrane
- 1) Thin respiratory membrane (0.6 μ m)
 - ↑ Thickness ⇒↓ rate of diffusion
 (e.g. pulmonary edema & fibrosis)
- 2) Diameter of pulmonary capillary = 8 μ m, diameter of RBC =7.2 μ m
 - RBC are squeezed through pulmonary capillary → in close contact with respiratory membrane

2) Surface area of respiratory membrane:

- O Rate of diffusion is directly proportional to the surface area of respiratory membrane (70 m²)
 - ↓ Emphysema, chronic smokers and pneumectomy
- 3) Partial pressure difference of gases
 - \uparrow Partial pressure gradient $\rightarrow \uparrow$ rate of diffusion
 - Gases diffuse from a region of higher partial pr to a region of lower partial pr across the membrane until the pr of the gases on the two sides become equal

	Alveolar air	Pulmonary capillary blood	Partial pressure gradient
PO ₂ mm Hg	100	40	60
PCO ₂ mm Hg	40	46	6

4) Diffusion coefficient

- Definition: Volume of gas in ml which diffuses through 1cm² of a membrane in one minute when there is a pressure difference of 1mm Hg across the membrane Diffusion coefficient α s
- ⊙ \uparrow Diffusion coefficient \Rightarrow \uparrow rate of gas diffusion
- Diffusion coefficient of O₂=1, CO₂=20, N₂=0.5, CO=0.8, He=0.9 (The diffusion coefficient of CO₂ is 20 times more than that of O₂)

 $D\alpha \frac{\Delta P \times A \times S}{d \times \sqrt[2]{M.Wt}}$

 O =Rate of diffusion of the gas, △P= Pressure gradient, A=Surface area, S=Solubility of the gas, d=Thickness of the respiratory membrane, MW= Molecular weight of the gas.

Perfusion-limited & diffusion limited gas exchange

- \odot Depends on their reaction with substances in the blood
- Blood takes 0.75 sec to traverse the pul capillaries at rest

Perfusion limited exchange

- Aesthetic gas nitrous oxide (N_2O)
 - Doesn't form bond with Hb
 - ↑ N₂O content of blood ⇒ rapid ↑ PN₂O (equilibrium within 0.1 sec)
 - Diffusion of N₂O can be increased only if perfusion increases

- Reach equilibrium with within 0.3 sec (perfusion limited)
- In fibrosis (thickening of resp membrane) & emphysema (↓surface area of resp membrane) ⇒ ↓ O₂ diffusion (diffusion limited)

Diffusion limited exchange

●Carbon monoxide (CO)

- Strong bond to Hb \rightarrow \uparrow CO in blood \Rightarrow minimum \uparrow Pco
- Equilibrium is not reached in 0.75 sec
- Transfer of CO is limited by the rate of diffusion, not the amount of blood available

Perfusion limited gases	Diffusion limited gases	
N ₂ O (anesthetic gas)	СО	
CO ₂		
O ₂ (Normal condition)	O ₂ (Emphysema, fibrosis, exercise)	

The diffusion capacity of the lung to the gases:

- **Definition:** The volume of gas which is diffused/min/1mmHg difference in partial pressure of the gas.
- Measurement: The diffusion capacity for CO (D_{LCO}) is measured as an index of diffusion capacity because its uptake is diffusion limited.

PACO – PaCO

PACO

- Factors: same factors that affect rate of gas diffusion through the respiratory membrane affects diffusion capacity of the lung
 - It is directly proportional to the surface area of alveolo-capillary membrane and inversely proportional to its thickness.

• Normal value

● DLCO at rest is 25mL/min/mmHg

- It increases to three fold during exercise because of capillary dilation and an increase in the number of active capillaries
- $D_{LO_2} = D_{LCO} = 25 \text{mL/min/mmHg}$
 - \uparrow DLO₂ in Exercise
 - \downarrow DLO₂ Diseases (fibrosis of alveolar walls)
- $D_{LCO_2} = 400 \text{ml/min/mm Hg} (> DLO_2)$
 - High solubility of CO₂ in cell membrane (CO₂ retention is rarely a problem in patients with alveolar fibrosis even when the reduction in diffusion capacity for O₂ is sever)

Effect of V/Q on alveolar gas concentration

- Ratio of alveolar ventilation(V) to pulmonary blood flow (Q)
 - Matching ventilation and perfusion is important to achieve the ideal exchange of O₂ and CO₂
 - Normal V/Q (whole lung) at rest is 0.8 (4L/min ÷ 5L/min)

Ventilation	Normal	Zero	Normal
Perfusion	Normal	Normal	Zero
V/Q	Normal	Zero	Infinity
Situation	Normal	Complete airway obstruction →shunted blood	Pulmonary artery obstruction \rightarrow dead space
Gas exchange	Optimal	No gas exchange	No gas exchange
Alveolar:Po ₂ mmHg Pco ₂ mmHg	Po ₂ = 100 Pco ₂ = 40	$Po_2 = 40$ $Pco_2 = 46$	Po ₂ = 149.7 Pco ₂ = 0.3