
exchange

Objectives

\odot Composition of air in different parts of respiratory system and difference in the composition of atmospheric air and alveolar air

- Factors affecting diffusion of gases through respiratory membrane
- Diffusion limited and perfusion limited gas exchange
\odot Definition of diffusion capacity, the difference between the diffusion capacity of O_{2} and that of CO_{2} in the lungs.
\odot Effect of V / Q on alveolar gas concentration

Gas exchange

\odot Is a continuous process
\bigcirc Occurs through alveolo-capillary membrane by simple diffusion due to differences in partial pressure

(b) CO_{2} diffusion

Composition of air in different parts of respiratory system

Pressure mm Hg	Dry atmosph. air	Inspired air	Dead space air	Alveolar air
PO_{2}	160	$0.21 \times 754=158$	$0.21 \times 713=149.7$	100
PCO_{2}	0.3	$0.004 \times 754=0.3$	$0.004 \times 713=0.3$	40
$\mathrm{PH}_{2} \mathrm{O}$		5.7	47	47
PN_{2}	600	$0.79 \times 754=596$	$0.79 \times 713=563$	573
Total	760	760	760	760

Reasons for the Difference in the Composition of Atmospheric Air and Alveolar Air
\odot Constant absorption of O_{2} from alveoli to pulmonary capillaries \& diffusion of CO_{2} from pulmonary capillaries to alveoli.
\bigcirc Humidification of atmospheric air as it passes through the respiratory passages leads to dilution of gases.
© Partial replacement of alveolar air by atmospheric air with each breath.

Mechanisms by which Composition of Alveolar Air is Kept Constant ($\mathrm{PO}_{2}=100 \mathrm{mHg}, \mathrm{Pco}_{2}=40 \mathrm{mHg}$)

1) By proper ventilation and perfusion of lung:

- O_{2} continuously diffuses out of the alveoli into the blood stream and CO_{2} continuously diffuses into the alveoli from blood
- Inspired air mixes with alveolar air, replacing the O_{2} and diluting the CO_{2}.

2) Because of FRC of about 2 L at the end of expiration, 350 mL of inspired air or expired air has little effect on PO_{2} and PCO_{2} of alveolar air and alveolar gas composition remains constant.
3) Central and peripheral control mechanisms also operate to maintain alveolar gas composition constant.

Inspired air

Expired air $\mathrm{Po}_{2}=116$ $\mathrm{Pco}_{2}=32$
$\mathrm{PH}_{2} \mathrm{O}=47$
$\mathrm{PN}_{2}=565$

Veins

$\mathrm{Po}_{2}=40$
$\mathrm{Pco}_{2}=46$
$\mathrm{PH}_{2} \mathrm{O}=47$
$\mathrm{P}_{\mathrm{N}_{2}}=573$

Tissue
$\mathrm{Po}_{2}=<40$
$\mathrm{Pco}_{2}=>46$
$\mathrm{P}_{2} \mathrm{O}=47$
$\mathrm{P}_{2}=573$

Arteries
$\mathrm{Po}_{2}=95$
$\mathrm{Pco}_{2}=40$
$\mathrm{PH}_{2} \mathrm{O}=47$
$\mathrm{P}_{\mathrm{N}_{2}}=573$

Diffusion of gases through Respiratory Membrane
Layers of the respiratory membrane

Factors that affect rate of gas diffusion through the respiratory membrane

1) Thickness of respiratory membrane
© 2 Factors increases the rate of diffusion through the respiratory membrane
2) Thin respiratory membrane ($0.6 \mu \mathrm{~m}$)

- \uparrow Thickness $\Rightarrow \downarrow$ rate of diffusion (e.g. pulmonary edema \& fibrosis)

2) Diameter of pulmonary capillary $=8 \mu \mathrm{~m}$,
 diameter of RBC $=7.2 \mu \mathrm{~m}$

- RBC are squeezed through pulmonary capillary \rightarrow in close contact with respiratory membrane

2) Surface area of respiratory membrane
\odot Rate of diffusion is directly proportional to the surface area of respiratory membrane ($70 \mathrm{~m}^{2}$)

- \downarrow Emphysema, chronic smokers and pneumectomy

3) Partial pressure difference of gases
$\bigcirc \uparrow$ Partial pressure gradient $\rightarrow \uparrow$ rate of diffusion

- Gases diffuse from a region of higher partial pr to a region of lower partial pr across the membrane until the pr of the gases on the two sides become equal

	Alveolar air	Pulmonary capillary blood	Partial pressure gradient
$\mathrm{PO}_{2} \mathrm{~mm} \mathrm{Hg}$	100	40	60
$\mathrm{PCO}_{2} \mathrm{~mm} \mathrm{Hg}$	40	46	6

4) Diffusion coefficient
© Definition: Volume of gas in ml which diffuses through $1 \mathrm{~cm}^{2}$ of a membrane in one minute when there is a pressure difference of 1 mm Hg across the membrane

$$
\text { Diffusion coefficient } \alpha \frac{\mathrm{s}}{\sqrt[2]{\mathrm{M} \cdot \mathrm{Wt}}}
$$

$\bigcirc \uparrow$ Diffusion coefficient $\Rightarrow \uparrow$ rate of gas diffusion

- Diffusion coefficient of $\mathrm{O}_{2}=1, \mathrm{CO}_{2}=20, \mathrm{~N}_{2}=0.5, \mathrm{CO}=0.8, \mathrm{He}=0.9$ (The diffusion coefficient of CO_{2} is 20 times more than that of O_{2})

$$
\mathrm{D} \alpha \frac{\Delta \mathrm{P} \times \mathrm{A} \times \mathrm{S}}{\mathrm{~d} \times \sqrt[2]{\mathrm{M} \cdot \mathrm{Wt}}}
$$

© $\mathrm{D}=$ Rate of diffusion of the gas, $\Delta \mathrm{P}=$ Pressure gradient, $\mathrm{A}=$ Surface area, $S=$ Solubility of the gas, $d=$ Thickness of the respiratory membrane, MW= Molecular weight of the gas.

Perfusion- limited \& diffusion limited gas exchange

© Depends on their reaction with substances in the blood
© Blood takes 0.75 sec to traverse the pul capillaries at rest

Perfusion limited exchange

- Aesthetic gas nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$)
- Doesn't form bond with Hb
- $\uparrow \mathrm{N}_{2} \mathrm{O}$ content of blood \Rightarrow rapid $\uparrow \mathrm{PN}_{2} \mathrm{O}$ (equilibrium within 0.1 sec)
- Diffusion of $\mathrm{N}_{2} \mathrm{O}$ can be increased only if perfusion increases

- Oxygen $\left(\mathrm{O}_{2}\right)$
- Reach equilibrium with within 0.3 sec (perfusion limited)
- In fibrosis (thickening of resp membrane) \& emphysema (\downarrow surface area of resp membrane) $\Rightarrow \downarrow \mathrm{O}_{2}$ diffusion (diffusion limited)

Diffusion limited exchange
\bigcirc Carbon monoxide (CO)

- Strong bond to $\mathrm{Hb} \rightarrow \uparrow \mathrm{CO}$ in blood \Rightarrow minimum \uparrow Pco
- Equilibrium is not reached in 0.75 sec
- Transfer of CO is limited by the rate of diffusion, not the amount of blood available

Perfusion limited gases	Diffusion limited gases
$\mathrm{N}_{2} \mathrm{O}$ (anesthetic gas)	CO
CO_{2}	
O_{2} (Normal condition)	O_{2} (Emphysema, fibrosis, exercise)

The diffusion capacity of the lung to the gases:

© Definition: The volume of gas which is diffused $/ \mathrm{min} / 1 \mathrm{mmHg}$ difference in partial pressure of the gas.
\bigcirc Measurement: The diffusion capacity for $\mathrm{CO}\left(\mathrm{D}_{\mathrm{Lco}}\right)$ is measured as an index of diffusion capacity because its uptake is diffusion limited.

- $\mathrm{D}_{\mathrm{LCO}}$ is proportional to the amount of CO entering the blood $\left(\mathrm{V}_{\mathrm{CO}}\right)$ divided by P_{co} in the alveoli $\left(\mathrm{P}_{\mathrm{AcO}}\right)$ minus the partial pressure of CO in the blood entering pulmonary capillaries \approx zero (except in habitual smokers)

$$
\begin{aligned}
& \text { DLCO }=~-----------------~ \\
& \text { PACO -PaCO }
\end{aligned}
$$

Paco

- Factors: same factors that affect rate of gas diffusion through the respiratory membrane affects diffusion capacity of the lung
- It is directly proportional to the surface area of alveolo-capillary membrane and inversely proportional to its thickness.
\bigcirc Normal value
© DLco at rest is $25 \mathrm{~mL} / \mathrm{min} / \mathrm{mmHg}$
- It increases to three fold during exercise because of capillary dilation and an increase in the number of active capillaries
- $\mathrm{DLO}_{2}=$ DLco $=25 \mathrm{~mL} / \mathrm{min} / \mathrm{mm} \mathrm{Hg}$
- $\uparrow \mathrm{DLO}_{2}$ in Exercise
- $\downarrow \mathrm{DLO}_{2}$ Diseases (fibrosis of alveolar walls)
© $\mathrm{DLco}_{2}=400 \mathrm{ml} / \mathrm{min} / \mathrm{mm} \mathrm{Hg}\left(>\mathrm{DLO}_{2}\right)$
- High solubility of CO_{2} in cell membrane $\left(\mathrm{CO}_{2}\right.$ retention is rarely a problem in patients with alveolar fibrosis even when the reduction in diffusion capacity for O_{2} is sever)

Effect of V/Q on alveolar gas concentration

© Ratio of alveolar ventilation(V) to pulmonary blood flow (Q)

- Matching ventilation and perfusion is important to achieve the ideal exchange of O_{2} and CO_{2}
- Normal V/Q (whole lung) at rest is 0.8 ($4 \mathrm{~L} / \mathrm{min} \div 5 \mathrm{~L} / \mathrm{min}$)

Ventilation	Normal	Zero	Normal
Perfusion	Normal	Normal	Zero
V / Q	Normal	Zero	Infinity
Situation	Normal	Complete airway obstruction \rightarrow shunted blood	Pulmonary artery obstruction \rightarrow dead space
Gas exchange	Optimal	No gas exchange	No gas exchange
Alveolar: Po 2 mmHg $\mathrm{Pco}_{2} \mathrm{mmHg}$	$\mathrm{PO}_{2}=100$ $\mathrm{PcO}_{2}=40$	$\mathrm{Po}_{2}=40$ $\mathrm{Pco}_{2}=46$	$\mathrm{Po}_{2}=149.7$ $\mathrm{Pco}_{2}=0.3$

