Independent Events

Definition (14): (Independent Events)

Two events A & B of a sample space S are called independent if and only if $P(A \cap B) = P(A)P(B)$.

For example, if $P(A) = \frac{2}{5}$, $P(B) = \frac{1}{2} \& P(A \cap B) = \frac{1}{5}$, then A & B are independent events.

Theorem (10)

If A & B are two independent events such that $P(B) \neq 0$. Then $P(A \backslash B) = P(A)$.

Proof:

$$P(A \backslash B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

Theorem (11)

If A & B are two independent events. Then:

- (a) A & B' are independent. (b) A' & B are independent.
- (c) A' & B' are independent.

Proof:

- (a) Since $P(A) = P(A \cap B) + P(A \cap B') \rightarrow P(A \cap B') = P(A) P(A \cap B) \rightarrow P(A \cap B') = P(A) P(A)P(B) = P(A)[1 P(B)] = P(A)P(B')$. Therefore A & B' are independent.
- (b) (Home Work)
- (c) Since $A' \cap B' = (A \cup B)'$. Therefore $P(A' \cap B') = P[(A \cup B)'] = 1 P(A \cup B)$ $= 1 [P(A) + P(B) P(A \cap B)] = 1 P(A) P(B) + P(A)P(B)$ = [1 P(A)] P(B)[1 P(A)] = [1 P(A)][1 P(B)] = P(A')P(B').

Therefore A' & B' are independent.

Example (10)

Tossing a coin three times. Let A be the event "there are more heads than tails", B be the event "the results of the first two tosses are the same" and C be the event "heads on the first toss". (a) Does A & B are independent? Why? (b) Does A & C are independent? Why? (c) Does B & C are independent?

Solution

Why?

The sample space $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$. $A = \{HHH, HHT, HTH, THH\}, B = \{HHH, HHT, TTH, TTT\},$ $C = \{HHH, HHT, HTH, HTT\}.$

(a) $A \cap B = \{HHH, HHT\}.$

$$P(A) = \frac{4}{8} = \frac{1}{2}$$
, $P(B) = \frac{4}{8} = \frac{1}{2}$, $P(A \cap B) = \frac{2}{8} = \frac{1}{4}$.

Since $P(A)P(B) = P(A \cap B)$, therefore A & B are independent.

(b) $A \cap C = \{HHH, HHT, HTH\}.$

$$P(A) = \frac{1}{2}$$
, $P(C) = \frac{4}{8} = \frac{1}{2}$, $P(A \cap C) = \frac{3}{8}$.

Since $P(A)P(C) \neq P(A \cap C)$, therefore A & C are not independent.

(c) $B \cap C = \{HHH, HHT\}.$

$$P(B) = \frac{1}{2}$$
, $P(C) = \frac{1}{2}$, $P(B \cap C) = \frac{2}{8} = \frac{1}{4}$.

Since $P(B)P(C) = P(B \cap C)$, therefore B & C are independent.

Theorem (12)

If A & B are mutually exclusive events such that $P(A) \neq 0 \& P(B) \neq 0$. Then A & B are not independent (dependent).

Proof:

Suppose A & B are independent. Therefore $P(A \cap B) = P(A)P(B)$.

Since A & B are mutually exclusive, therefore $A \cap B = \emptyset$.

Hence $P(A \cap B) = P(\emptyset) = 0 = P(A)P(B) \rightarrow either P(A) = 0 \text{ or } P(B) = 0.$

This is a contradiction. Then A & B are not independent.

Theorem (13)

If A & B independent events such that $P(A) \neq 0$ & $P(B) \neq 0$. Then A & B are not mutually exclusive events.

Proof

Since A & B are independent events, therefore $P(A \cap B) = P(A)P(B)$.

Suppose A & B are mutually exclusive events, therefore $P(A \cap B) = 0$

Hence $P(A)P(B) = 0 \rightarrow either P(A) = 0$ or P(B) = 0.

This is contradiction.

Then A & B are not mutually exclusive events.

Definition (15)

Three events A, B & C are said to be independent if and only if:

(a)
$$P(A \cap B) = P(A)P(B)$$
. (b) $P(A \cap C) = P(A)P(C)$.

$$(c) P(B \cap C) = P(B)P(C). \qquad (d) P(A \cap B \cap C) = P(A)P(B)(P(C).$$

Example (11)

Rolling a die and a coin. Let A be the event that "tails and odd numbers", B be the event that "tails and prime numbers" and C be the event that "tails and even numbers". Does A, B & C are independent? Why?

Solution

The sample space $S = \{H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6\}.$

$$A = \{T1, T3, T5\}, \qquad B = \{T2, T3, T5\}, \qquad C = \{T2, T4, T6\}$$

$$A = \{T1, T3, T5\},$$
 $B = \{T2, T3, T5\},$ $C = \{T2, T4, T6\}$
 $A \cap B = \{T3, T5\},$ $A \cap C = \emptyset,$ $B \cap C = \{T2\},$ $A \cap B \cap C = \emptyset.$

$$P(A) = P(B) = P(C) = \frac{3}{12} = \frac{1}{4} \cdot P(A \cap B) = \frac{2}{12} = \frac{1}{6} , P(A \cap C) = 0,$$

$$P(B \cap C) = \frac{1}{12}$$
, $P(A \cap B \cap C) = 0$.

We notice that

$$P(A \cap B) \neq P(A)P(B), P(A \cap C) \neq P(A)P(C), P(B \cap C) \neq P(B)P(C) \&$$

$$P(A \cap B \cap C) \neq P(A)P(B)P(C)$$
. Then

A, B & C are not independent.

Theorem (14)

If A, B & C are independent events. Then

- (a) $A \& (B \cup C)$ are independent events.
- (b) $A \& (B \cap C)$ are independent events.

Proof

$$(a) P[A \cap (B \cup C)] = P[(A \cap B) \cup (A \cap C)]$$

$$= P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$$

$$= P(A)P(B) + P(A)P(C) - P(A)P(B)P(C)$$

$$= P(A)[P(B) + P(C) - P(B)P(C)]$$

$$= P(A)[P(B) + P(C) - P(B \cap C)] = P(A)P(B \cup C).$$

Then $A \& (B \cup C)$ are independent events.

$$(b) P[A \cap (B \cap C)] = P(A \cap B \cap C) = P(A)P(B)P(C) = P(A)P(B \cap C).$$

Then $A \& (B \cap C)$ are independent events.

Exercises (1-6)

- 1: Let A & B be independent events with $P(A) = P(B) \& P(A \cup B) = 0.5$. Find P(A).
- 2: Let A & B be independent events with $P(A \cap B) = 0.16 \&$ $P(A \cup B) = 0.64$. Find P(A) & P(B).
- 3: Let A & B be independent events such that the probability that at least one

- of them occurs is $\frac{1}{3}$ and the probability that A occurs but B does not occur is $\frac{1}{9}$. Calculate P(B).
- 4: Let the event $A = \{a \text{ family has childern}\}$ and the event $B = \{a \text{ family has at most one boy}\}$. Show that A & B are independent if the family has three children. If the family has two children determine whether the events A & B independent or not.
- 5: Rolling 2 dice. Let A be the event that the sum of two faces greater than 6, B be the event that the sum of two faces greater than 8 and C be the event that the sum of two faces greater than 10. Does A, B & C independent? Explain your answer.