Conditional Probability

Often it is required to find the probability of an event B under the condition that an event A occurs. This probability is called the conditional probability of B given A, denoted by $P(B \setminus A)$. It is defined by

$$P(B \backslash A) = \frac{P(A \cap B)}{P(A)}$$
, $P(A) \neq 0$

Similarly, the conditional probability of A given B, denoted by $P(A \setminus B)$, is defined by

$$P(A \backslash B) = \frac{P(A \cap B)}{P(B)}$$
, $P(B) \neq 0$

Note (5)

The conditional probability $P(A \setminus B)$ satisfies all three axioms of a probability measure:

- $(a)P(A \setminus B) \ge 0$ for all event A.
- (b) $P(B \backslash B) = 1$.
- (c) If $A_1, A_2, ...$ are mutually exclusive events,

$$P(\cup_{k=1}^{\infty} A_k \backslash B) = \sum_{k=1}^{\infty} P(A_k \backslash B).$$

Note (6)

If A & B are two events such that $P(A) \neq 0 \& P(B) \neq 0$, then

$$P(A \cap B) = P(A)P(B \setminus A) = P(B)P(A \setminus B).$$

Note (7)

If B is an event in S such that $P(B) \neq 0$, then $P(S \setminus B) = 1$.

Note (8)

Let $A_1, A_2 \& B$ are events in S such that $A_1 \& A_2$ are disjoint events & $P(B) \neq 0$. Then $P(A_1 \cup A_2 \setminus B) = P(A_1 \setminus B) + P(A_2 \setminus B)$.

Note (9)

If A & B are two events in S such that $A \cap B = \emptyset \& P(B) \neq 0$, then $P(A \backslash B) = 0$.

Note (10)

If A & B are two events in S such that $A \subset B \& P(B) \neq 0$, then

$$P(A \backslash B) = \frac{P(A)}{P(B)}$$
.

Note (11)

If A & B are two events in S such that $B \subset A \& P(B) \neq 0$, then $P(A \backslash B) = 1$. Note (12) For any three events A_1 , A_2 & A_3 . Then

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2 \setminus A_1)P(A_3 \setminus A_1 \cap A_2).$$

Example (5)

In a class 25 boys and 10 girls, if we choose 3 names at random. What is the probability that: (a) all boys? (b) all girls?

Solution

We denote the boys by B_1 , B_2 , B_3 and the girls by G_1 , G_2 , G_3 .

(a)
$$P(B_1 \cap B_2 \cap B_3) = P(B_1)P(B_2 \setminus B_1)P(B_3 \setminus B_1 \cap B_2)$$

= $\left(\frac{25}{35}\right)\left(\frac{24}{34}\right)\left(\frac{23}{33}\right) = 0.3514$

(b)
$$P(G_1 \cap G_2 \cap G_3) = P(G_1)P(G_2 \setminus G_1)P(G_3 \setminus G_1 \cap G_2)$$

= $\left(\frac{10}{35}\right)\left(\frac{9}{34}\right)\left(\frac{8}{33}\right) = 0.01833.$

Example (6)

Consider all families "with two children (not twins)". Let E be the event "two boys" and F be the event "at least one boy". Calculate $P(E \setminus F)$.

Solution

We denote the boy by B and the girl by G. The sample space is $S = \{BB, BG, GB, GG\}$, the events $E = \{BB\}$, $F = \{BB, BG, GB\}$ & $E \cap F = \{BB\}$. Therefore $P(E) = \frac{1}{4}$, $P(F) = \frac{3}{4}$ & $P(E \cap F) = \frac{1}{4}$.

Then
$$P(E \setminus F) = \frac{P(E \cap F)}{P(F)} = \frac{1}{3}$$
.

Example (7)

Assume that a certain school contains equal number of female and male students. 5% of the male population is a football players. Find the probability that a randomly selected student is a football player male.

Solution

We denote the male by M & the football player by F. We want to calculate $P(M \cap F)$.

Then
$$P(M \cap F) = P(M)P(F \setminus M) = \left(\frac{1}{2}\right)\left(\frac{5}{100}\right) = \frac{1}{40}$$
.

Exercises (1-4)

1: Let A & B are two events such that $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3} \& P(A \cap B) = \frac{1}{4}$. Find: $P(A \setminus B)$, $P(B \setminus A)$, $P(A \cup B) \& P(A' \setminus B')$.

2: Let A & B are two events such that $P(A \cup B) = \frac{3}{4}$, $P(B) = \frac{5}{8} \& P(A) = \frac{3}{8}$. Find $P(A \setminus B) \& P(B \setminus A)$.

3: If we randomly choose two television sets in succession from a shipment of 240 television sets of which 15 are defective. What is the probability that they will be both defective?

4: A box of fuses contains 20 fuses, of which 5 are defective. If 3 of fuses are selected at random and removed from a box in succession without replacement. What is the probability that all three fuses are defective?

Definition (13): (Partition)

Let S be a set and let $\mathbb{P} = \{A_i\}_{i=1}^n$ be a collection of subsets of S. Then \mathbb{P} is called a partition of S if: $S = \bigcup_{i=1}^n A_i$ and $A_i \cap A_i = \emptyset$ for $i \neq j$.

Theorem (8): (Total Probability Theorem)

If the events $\{A_i\}_{i=1}^n$ constitute a partition of the sample space $S \& P(A_i) \neq 0$, i=1,2,...,n. Then for any event B in S: $P(B) = \sum_{i=1}^n P(A_i)P(B \setminus A_i)$. Proof:

Since
$$B = B \cap S = B \cap (A_1 \cup A_2 \cup A_3 \cup ... \cup A_n)$$
.

Then
$$B = (B \cap A_1) \cup (B \cap A_2) \cup (B \cap A_3) \cup ... \cup (B \cap A_n)$$
.

But $B \cap A_i$, i = 1, 2, 3, ..., n are mutually exclusive.

Then
$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(A_i) P(B \setminus A_i)$$
.

Theorem (9): (Bayes' Theorem)

If the events $\{A_i\}_{i=1}^n$ constitute a partition of the sample space $S \& P(A_i) \neq 0$, i=1,2,3,...,n. Then for any event B in S such that $P(B) \neq 0$,

$$P(A_i \backslash B) = \frac{P(A_i)P(B \backslash A_i)}{\sum_{i=1}^{n} P(A_i)P(B \backslash A_i)}$$

Proof:

By total probability theorem, we have

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B \setminus A_i)$$
 but $P(B) = \frac{P(A_i \cap B)}{P(A_i \setminus B)}$. Therefore

$$\frac{P(A_i \cap B)}{P(A_i \setminus B)} = \sum_{i=1}^n P(A_i) P(B \setminus A_i) \to P(A_i \setminus B) = \frac{P(A_i \cap B)}{\sum_{i=1}^n P(A_i) P(B \setminus A_i)}.$$

Then

$$P(A_i \backslash B) = \frac{P(A_i)P(B \backslash A_i)}{\sum_{i=1}^n P(A_i)P(B \backslash A_i)}$$
.

Example (8)

Two boxes contains balls. Box1 has 3 red & 5 white balls. Box2 has 2 red & 4 white balls. Choose a box, then choose a ball from the chosen box.

- (a) Find the probability that a white ball is chosen.
- (b)If a red ball is chosen, find the probability that it is from box2.

Solution

Let A_1 denotes to the box1, A_2 denotes to the box2 and B denotes to the chosen ball. Let w denotes to the white ball and R denotes to the red ball.

$$(a) P(B)_{w} = \sum_{i=1}^{2} P(A_{i})P(B \setminus A_{i}) = P(A_{1})P(B \setminus A_{1}) + P(A_{2})P(B \setminus A_{2})$$

$$= \left(\frac{1}{2}\right)\left(\frac{5}{8}\right) + \left(\frac{1}{2}\right)\left(\frac{4}{6}\right) = \frac{5}{16} + \frac{1}{3} = \frac{31}{48}.$$

$$(b) P(A_{2} \setminus B)_{R} = \frac{P(A_{2})P(B \setminus A_{2})}{\sum_{i=1}^{2} P(A_{i})P(B \setminus A_{i})} = \frac{P(A_{2})P(B \setminus A_{2})}{P(A_{1})P(B \setminus A_{1}) + P(A_{2})P(B \setminus A_{2})}$$

$$= \frac{\left(\frac{1}{2}\right)\left(\frac{2}{6}\right)}{\left(\frac{1}{2}\right)\left(\frac{3}{8}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{6}\right)} = \frac{\frac{1}{6}}{\frac{3}{16} + \frac{1}{6}} = \frac{8}{17} \dots \blacksquare$$

Example (9)

Three machines M_1 , M_2 & M_3 produce glasses where M_1 produces 20% of glasses, M_2 produces 30% of glasses and M_3 produces 50% of glasses. Also, 1% of glasses produced by M_1 is defective, 2% of glasses produced by M_2 is defective, and 3% of glasses produced by M_3 is defective. Choose a glass, then find: (a) the probability that the glass is produced by M_3 if it is defective, (b) the probability that the glass is defective

Solution

Let g denotes to the chosen glass, and d denotes the defective glass.

$$\begin{split} (a) \ P(M_3 \setminus \mathbf{g})_d &= \frac{P(M_3)P(g \setminus M_3)}{\sum_{i=1}^3 P(M_i)P(g \setminus M_i)} \\ &= \frac{P(M_3)P(g \setminus M_3)}{P(M_1)P(g \setminus M_1) + P(M_2)P(g \setminus M_2) + P(M_3)P(g \setminus M_3)} \\ &= \frac{\frac{(\frac{50}{100})(\frac{3}{100})}{\left(\frac{20}{100}\right)(\frac{1}{100}) + \left(\frac{50}{100}\right)(\frac{3}{100})} = \frac{15}{23} \,. \end{split}$$

$$\begin{aligned} (b) \ P(g)_d &= \sum_{i=1}^3 P(M_i) P(g \backslash M_i) \\ &= P(M_1) P(g \backslash M_1) + P(M_2) P(g \backslash M_2) + P(M_3) P(g \backslash M_3) \\ &= \left(\frac{20}{100}\right) \left(\frac{1}{100}\right) + \left(\frac{30}{100}\right) \left(\frac{2}{100}\right) + \left(\frac{50}{100}\right) \left(\frac{3}{100}\right) = \frac{23}{1000}. \end{aligned}$$

Exercises (1-5)

- 1: Two boxes contains balls. Box1 has 3 red, 1 white & 2 black balls. Box2 has 1 red & 2 black balls. Choose a box, then choose a ball from the chosen box. Find the probability that: (a) the ball is chosen from the box2 if the ball is red, and (b) a white ball is chosen.
- 2: A company produces electric relays has three manufacturing plants producing 50%, 30% & 20% respectively of its product. Suppose that the probabilities that a relay manufactured by these plants is defective are 0.02, 0.05 & 0.01 respectively.
- (a) If a relay is selected at random from the output of the company, what is the probability that it is defective?
- (b) If a relay selected at random is found to be defective, what is the probability that it was manufactured by plant 2?
- 3: Two boxes contains balls. Box1 contains 7 green & 4 white balls. Box2 contains 3 green and 10 yellow balls. The boxes are arranged so that the probability of selecting box1 $is \frac{1}{3}$ and the probability of selecting box2 $is \frac{2}{3}$. Choose a box, then choose a ball from the chosen box. Find the probability that: (a) the ball is chosen is green, and (b) the ball is chosen from box1 if it is green.