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Introduction

In 1859, after reading a paper on the diffusion of molecules by Rudolf Clausius, Scottish

physicist James Clerk Maxwell formulated the Maxwell distribution of molecular velocities,

which gave the proportion of molecules having a certain velocity Kinetic Molecular Theory

states that gas particles are in constant motion and exhibit perfectly elastic collisions. they

obey Newton's laws of motion. This means that the molecules move in straight lines until they

collide with each other or with the walls of the container. Kinetic Molecular Theory can be

used to explain both Charles' and Boyle's Laws. The average kinetic energy of a collection of

gas particles is directly proportional to absolute temperature only.in a specific range.

The basics of the Kinetic Molecular Theory of Gases (KMT) should be understood. A model

is used to describe the behavior of gases. More specifically, it is used to explain macroscopic

properties of a gas, such as pressure and temperature, in terms of its microscopic

components, such as atoms. Like the ideal gas law, this theory was developed in reference to

ideal gases, although it can be applied reasonably well to real gases. In order to apply the

kinetic model of gases, The simplest kinetic model is based on four assumptions that :
• Gases consist of large numbers of tiny particles that are far apart relative to their size.

• Collision between gas particles and between particles and container walls are elastic collisions

(no energy loss) with each other and with the wall of container .

• Gas particles are in continuous, random, constant and linear motion. 

• There are no forces of attraction between gas particles.
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Pressure :

The macroscopic phenomena of pressure can be explained in terms of the kinetic

molecular theory of gases. Assume the case in which a gas molecule (represented by a

sphere) is in a box, length L (Figure 1). Through using the assumptions laid out before, and

considering the sphere is only moving in the x-direction, we can examine the instance of the

sphere colliding elastically with one of the walls of the box.

The momentum of collision of one molecule is given by ;

M = mu

since we are only considering the x dimension.
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The total momentum change for this collision on the wall is then given by

∆M = mu − m( − u) = 2mu

Given that the amount of time it takes between collisions of the molecule with the wall is

t =  
L
u

we can give the frequency of collisions of the molecule against a given wall of the box per 

unit time as

t = 
2 L
u

Solving for change of momentum per unit of time gives the force exerted by a molecule

on the wall of container, according to the Newton's laws F = ma = mu / t = ∆M / t

Fx = 
∆M

t
=  2mu . 

u
2L

= 
mu2

L

With the expression that F=mu2/L one can now solve for the pressure exerted by the

molecular collision, where area is given as the area of one wall of the box,

A = L2

Any surface in contact with the gas is constantly bombarded by the molecules, it easy to see 

how a gas should exert a pressure on the walls of a container. Pressure arises from the force due 

to the acceleration of molecules as they bound off a container's walls, the pressure is ;

Px =
Fx

A
=  

Fx

L2 =
mu2

L
. 

1
L2
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Px =  
mu2

L3 =  
mu2

V
Where V is a volume

The expression can now be written in term of the pressure associated with collision of one

molecule in x direction :

Px = 
mu2

V
The expression can now be written in terms of the total pressure associated with collisions

from N number of molecules in x direction :

Px =  
m ( u2

1 + u2
2 +……..+ u2

n )

V

But the average square velocity of molecules

u2
ave = 

( u2
1 + u2

2 +……..+ u2
n )

N
Then

u2
ave   N =  ( u2

1 + u2
2 +……..+ u2

n )

Then

Px =  
m N u2

ave

V

The expression can now be written in terms of the pressure associated with collisions in the y

and z directions by

Py =  
m N v2

ave

V
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Pz =  
m N w2

ave

V
The average pressure in the container 

Pave =  
( Px + Py + Pz )

3
Then 

Pave =  
m N( u2

ave + v2
ave + w2

ave )
3 V

But 

C2
ave = u2

ave + v2
ave + w2

ave  

Then 

Pave =  
m N C2

ave

3V
Finally , the expression can now be written in terms of the pressure associated with collisions in

all directions by

P =  
m N C2

3V

Above equation represent the Pressure of gases in a box by the kinetic Molecular Theory(KMT)
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Relation between molecular kinetic energy of gas and temperature  :

The kinetic energy of a gas is a measure of its temperature. The kinetic energy of a gas particle is

directly proportional to the temperature. An increase in temperature increases the speed in which

the gas molecules move. All gases at a given temperature have the same kinetic energy.

K. E. =  
1
2

mg C2

Where mg is the mass of gas = m N, Then we can write 

P = 
2
2

.  
1
3

m N C2

V
=  

2
3 V

.  
1
2

m N C2 

P = 
2

3 V
.  

1
2

mg C2 

PV =  
2
3

K. E.

K. E. =   
3
2

PV

From the ideal gas law, and for one mole of gas ( n = 1 )

P Vmol = n Ro T = Ro T

Where Ro is universal gas constant = 8.3145 J/mol K, then

K. E. =   
3
2

Ro T

Dr. Sajid Alabbasi
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Relation between Speed of gas molecules and pressure  :

From

P =   
1
3

m N C2

V
Then

P =   
1
3

mg C2

V

𝑪𝟐 = 𝟑 𝑷
V

mg
= 

3 P

𝝆

Then

C = √ 
3 P

𝝆

𝝆 is the density of gas ( 
kg
m3 )

Relation between Speed of gas molecules and tempeature :

For one mole of gas we can write

P =   
1
3

m NAvo C2

Vmol

Where Navo is Avogadro's number = 6.0221 x 1023 /mol
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From the ideal gas law, and for one mole of gas ( n = 1 )

P Vmol = n Ro T = Ro T

Where Ro is universal gas constant = 8.3145 J/mol K

P Vmol = 
1
3

m NavoC2

Ro T = 
1
3

m Navo C2

C2 =
3T
m

Ro

N
avo

C = √
3kT
m

Where k is Boltzmann constant = 
Ro

N
avo

= 1.38066 x 10-23 J/K

If divided k by m ( mass of one molecule )
k
m

=  
Ro

m N
𝑨vo

And Molecular weight of gas M = m Navo
Dr. Sajid Alabbasi
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C2 = 𝟑𝑻
Ro

M

Gas constant  R is                                          R = 
Ro

M

Obtained

C2 =  𝟑𝑻 R

C = √ 𝟑𝑻 R

The kinetic molecular theory can be used to explain each of the experimentally 

determined gas laws.

The Link Between P and n

The pressure of a gas results from collisions between the gas particles and the walls of the

container. Each time a gas particle hits the wall, it exerts a force on the wall. An increase in

the number of gas particles in the container increases the frequency of collisions with the

walls and therefore the pressure of the gas.

Avogadro's Hypothesis (V α N )

As the number of gas particles increases, the frequency of collisions with the walls of the

container must increase. This, in turn, leads to an increase in the pressure of the gas. Flexible

containers, such as a balloon, will expand until the pressure of the gas inside the balloon once

again balances the pressure of the gas outside. Thus, the volume of the gas is proportional to

the number of gas particles.
Dr. Sajid Alabbasi
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At constant temperature 

PV = Constant 

Dalton's Law of Partial Pressures 

(Pt = P1 + P2 + P3 + ...)

Imagine what would happen if six ball bearings of a different size were added to the molecular

dynamics simulator. The total pressure would increase because there would be more collisions with the

walls of the container. But the pressure due to the collisions between the original ball bearings and the

walls of the container would remain the same. There is so much empty space in the container that each

type of ball bearing hits the walls of the container as often in the mixture as it did when there was only one

kind of ball bearing on the glass plate. The total number of collisions with the wall in this mixture is therefore

equal to the sum of the collisions that would occur when each size of ball bearing is present by itself. In

other words, the total pressure of a mixture of gases is equal to the sum of the partial pressures of the

individual gases.

Gauge Pressure

A gauge is often used to measure the pressure difference between a system and the 

surrounding atmosphere. Gauge pressure is the pressure relative to atmospheric pressure. 

Therefore, it is positive for pressures above atmospheric pressure, and negative for pressures 

below it. This pressure is the gauge pressure and can be expressed as:

pg = ps – patm

Where:

pg = gauge pressure

ps = system pressure (absolute pressure )

patm = atmospheric pressure
Dr. Sajid Alabbasi
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Atmospheric Pressure

Standard sea-level pressure, by definition, equals 760 mm (29.92 inches) of mercury, 14.70 

pounds per square inch, 1,013.25 × 103 dynes per square centimetre, 1.01325 × 105 Newtons 

per square metre, 1,013.25 millibars, one standard atmosphere, or 101.325 kilopascals.

Dr. Sajid Alabbasi
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Expansion of Material 

Linear Expansion of Solids 

It is a well-known fact that most materials expand when heated. This expansion is called

thermal expansion. If a long thin rod of length L0, at an initial temperature Ti, is heated to a

final temperature Tf, then the rod expands by a small length ∆L, as shown in figure 1

( Fig. 1 ) Linear Expansion

It is found by experiment that the change in length ∆L depends on the temperature

change, ∆T = Tf − Ti; the initial length of the rod L0, and a constant that is characteristic of the

material being heated. The experimentally observed linearity between ∆L and L0∆t can be

represented by the equation

∆L = αL0∆T                                     (1)

We call the constant α the coefficient of

linear expansion. The change in length is

rather small, but it is, nonetheless, very

significant.

Dr. Sajid Alabbasi
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Example 1

Expansion of a railroad track. A steel railroad track was 30.0 m long when it was initially laid 

at a temperature of −6.70 0C. What is the change in length of the track when the temperature 

rises to 35.0 0C? If the coefficient of linear expansion for steel αsteel = 1.20 × 10−5/0C.

Solution 

The change in length becomes      

∆L = αL0∆T

∆L = (1.20 × 10−5/0C)(30.0 m)(35.0 0C − (−6.70 0C)

∆L = 0.0150 m = 1.50 cm

Even though the change in length is relatively small, 1.50 cm in a distance of 30.0 m, it is

easily measurable. The new length of the track becomes

L = L0 + ∆L

L = 30.0 m + 0.0150 m = 30.0150 m

As you can see the new length is essentially the same as the old length. Why then is this

thermal expansion so significant? Associated with this small change in length is a very large

force. We can determine the force associated with this expansion by computing the force

that is necessary to compress the rail back to its former length. The amount that a body is

stretched or compressed is given by Hooke’s law as
F
A

= Y
∆L
L0

We can solve this equation for the force that is associated with a compression. Taking the 

compression of the rail as 0.0150 m, Young’s modulus Y for steel as 2.10 × 1011 N/m2, and 

assuming  that the  cross-sectional  area  of the  rail  is 130 cm2, the force necessary to 

compress the rail is
Dr. Sajid Alabbasi
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𝑭 = AY
∆L
L0

F = (0.013 m2) 2.10 × 1011 N/m2 ( 0.0150 m / 30.0 m )

F = 1.37 x 106 N

This force of 1.37 x 106 N that is necessary to compress the rail by 1.50 cm, is also the force that is necessary

to prevent the rail from expanding. It is obviously an extremely large force. It is this large force associated with

the thermal expansion that makes thermal expansion so important. It is no wonder that we see and hear of cases

where rails and roads have buckled during periods of very high temperatures.

The expansion of the solid can be explained by looking at the molecular structure of the solid. The molecules

of the substance are in a lattice structure. Any one molecule is in equilibrium with its neighbors, but vibrates

about that equilibrium position. As the temperature of the solid is increased, the vibration of the molecule

increases. However, the vibration is not symmetrical about the original equilibrium position. As the temperature

increases the equilibrium position is displaced from the original equilibrium position. Hence, the mean

displacement of the molecule from the original equilibrium position also increases, thereby spacing all the

molecules farther apart than they were at the lower temperature. The fact that all the molecules are farther apart

manifests itself as an increase in length of the material. Hence, linear expansion can be explained as a molecular

phenomenon. The large force associated with the expansion comes from the large molecular forces between the

molecules. A more sophisticated approach to linear expansion can be found by writing equation 12.1 in the

calculus form

dL = αLdT

which can be written as 
dL
L

= α dT                         (2)
Dr. Sajid Alabbasi

15



and then integrated as 

ʃ
dL
L

=  ʃ α DT

The rod has the length L0 when it is at the temperature t0, and these values become the

lower limits of integration, while the rod has the length L when it is at the temperature t, and

these values become the upper limits of the integration. Assuming that the coefficient of

thermal expansion α is a constant it can be taken outside of the integral to yield

ʃ
dL
L

=  α ʃ dT

Upon integrating we obtain 

ln L |L
Lo = α  t |T

To

ln L – ln L0 = α  ( T − T0 )

ln (
L
L0

) = α ( T − T0 ) 

L
L0

= e α (T − T
0

)

and the final length of the rod after the expansion becomes

L = L0 e α (T − T
0
)                     (3)

Dr. Sajid Alabbasi
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Example 2

The new length of the railroad track. Find the new length of the steel railroad track of t1

when it expands from the initial temperature of − 6.70 0C to the final temperature of 35.0 0C?

The original length of the track was 30.0 m long. If the coefficient of linear expansion for steel is

α steel = 1.20 × 10−5/0C.

Solution

The new length of the track, found from equation 3, is 

L  = L0 e α (T − T
0

)   

L = (30.0 m)exp[(1.20*10−5/ 0C)(35.0 0C – (− 6.70 0C))] 

L = 30.0150 m

which is the same length we obtained in the simpler version in example 1.

Area Expansion of Solids

For the long thin rod, only the length change was significant and that was all that we

considered. But solids expand in all directions. If a rectangle of thin material of length L1 and

width L2, at an initial temperature of ti, is heated to a new temperature tf, the rectangle of

material expands, as shown in figure 2

( Fig. 2 ) Area Expansion

Dr. Sajid Alabbasi
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original area of the rectangle is given by

A = L1L2 ( 4 )

The change in area of the rectangle caused by a change in temperature of the material is 

found by differentiating equation 4 with respect to the temperature T. That is 

dA
dT

= L1
dL2

dT
+ L2

dL1

dT

Let us now divide both sides of this equation by equation 4 to get 
1
A

dA
dT

= 
L1

L1L2

dL2

dT
+ 

L2

L1L2

dL1

dT
which yields 

1
A

dA
dT

= 
1
L2

dL2

dT
+ 
1
L1

dL1

dT
But found before

α = 
1
L

dL
dT

Thus
1
L1

dL1

dT
= α ,     and 

1
L2

dL2

dT
= α

Hence
1
A

dA
dT

= α + α = 2 α 

The change in area dA of a material, caused by a change in temperature dt, is 

dA = 2αAdT ( 5 )

Dr. Sajid Alabbasi
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Equation 5 gives us the area expansion dA of a material of original area A when subjected

to a temperature change dT. Note that the coefficient of area expansion is twice the

coefficient of linear expansion. Although we have derived this result for a rectangle it is

perfectly general and applies to any area. For example, if the material was circular in shape,

the original area A0 would be computed from the area of a circle of radius r0 as

A0 = πr0
2

We would then find the change in area from equation 5.

∆A = 2αA0∆T

The new area can be found by adding the change in area ∆A to the original area A0 as 

A = A0 + ∆A                                   ( 6 )

or using the same calculus approach we used with equation 2 that culminated with equation 

3 we would obtain for the final area of the material.

A = A0 e2α ( T − T
0

) ( 7 )

Example 3

The change in area. An aluminum sheet 2.50 m long and 3.24 m wide is connected to some 

posts when it was at a temperature of −10.5 0C. What is the change in area of the aluminum

sheet when the temperature rises to 65.0 0C? If the coefficient of linear expansion for 

aluminum, is αAl = 2.4 × 10−5/0C.

Solution

The original area of the sheet, found from equation 4, is

A0 = L1L2

A0 = (2.50 m)(3.24 m) = 8.10 m2

Dr. Sajid Alabbasi
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The change in area, found from equation 5, is

∆A = 2αA0∆T

∆A = 2(2.4 × 10−5/0C)(8.10 m2)(65.0 0C − (−10.5 0C)

∆A = 0.0294 m2 = 294 cm2

The new area of the sheet becomes 

A = A0 + ∆A 

∆A = 8.10 m2+ 0.0294 m2

∆A = 8.13 m2

Again notice that the new area is essentially the same as the old area, and the

significance of this small change in area is the very large force that is associated with this

thermal expansion.

All parts of a material expand at the same rate. For example, if there was a circular hole in

the material, the empty hole would expand at the same rate as if material were actually

present in the hole. We can see this in figure 3. The solid line represents the original material,

whereas the dotted lines represent the expanded material.

Many students feel that the material should expand into the

hole, thereby causing the hole to shrink. The best way to show

that the hole does indeed expand is to fill the hole with a plug

made of the same material. As the material expands, so does

the plug. At the end of the expansion remove the plug, leaving

the hole. Since the plug expanded, the hole must also have

grown. Thus, the hole expands as though it contained material.

This result has many practical applications.

( Fig. 3 )Dr. Sajid Alabbasi
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Example 4

Fitting a small  wheel  on a large  shaft. We  want to  place  a steel wheel on a steel shaft 

with a good tight fit. The shaft has a diameter of 10.010 cm. The wheel has a hole in the 

middle, with a diameter of 10.000 cm, and is at a temperature of 20 0C. If the  wheel is  

heated to  a temperature  of  132 0C, will  the wheel fit over the shaft ? The coefficient  of 

linear  expansion  for  steel is found  as α = 1.20 × 10−5/0C.

Solution

The present area of the hole in the wheel is not large enough to fit over the area of the 

shaft. We want to heat the wheel so that the new expanded area of the heated hole in the 

wheel will be large enough to fit over the area of the shaft. With the present dimensions the 

wheel can not fit over the shaft. If we place the wheel in an oven at 132 0C, the wheel 

expands. We can solve this problem by looking at the area of the hole and the shaft, but it 

can also be analyzed by looking at the diameter of the hole and the diameter of the shaft. 

When the wheel is heated, the diameter of the hole increases by 

∆LH = αL0∆T

∆LH = (1.20 × 10−5/0C)(10.000 cm)(132 0C − 20 0C) = 1.34 × 10−2 cm

The new hole in the wheel has the diameter

L = L0 + ∆L 

L = 10.000 cm + 0.013 cm = 10.013 cm

Because the diameter of the hole in the wheel is now greater than the diameter of the shaft,

the wheel now fits over the shaft. When the combined wheel and shaft is allowed to cool

back to the original temperature of 20 0C, the hole in the wheel tries to contract to its original

size, but is not able to do so, because of the presence of the shaft. Therefore, the enormous

forces associated with the thermal compression when the wheel is cooled, are exerted on the

shaft by the wheel, holding the wheel permanently on the shaft.Dr. Sajid Alabbasi
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Volume Expansion of Solids and Liquids 

All materials have three dimensions, length, width, and height. When a body is heated, all three dimensions

should expand and hence its volume should increase. Let us consider a solid box of length L1, width L2, and

height L3, at an initial temperature ti. If the material is heated to a new temperature tf, then each side of the box

undergoes an expansion dL. The volume of the solid box is given by

V = L1L2L3 ( 8 )

The change in volume of the box caused by a change in temperature of the material is found 

by differentiating equation 8 with respect to the temperature t. That is 

dV
dT

= L2 L3

dL1

dT
+ L1 L3

dL2

dT
+ L1 L2

dL3

dT

Let us now divide both sides of this equation by equation 8 to get 

1
V

dV
dT

= 
L2 L3

L1L2L3

dL1

dT
+ 

L1 L3

L1L2L3

dL2

dT
+ 

L1 L2

L1L2L3

dL3

dT

which yields 

1
V

dV
dT

= 
1
L1

dL1

dT
+ 
1
L2

dL2

dT
+ 
1
L3

dL3

dT

But found before

α = 
1
L

dL
dT

Thus

1
L1

dL1

dT
= α ,       

1
L2

dL2

dT
= α            and 

1
L2

dL2

dT
= α 

Dr. Sajid Alabbasi
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Hence
1
V

dV
dT

= α + α + α = 3 α

The change in area dV of a material, caused by a change in temperature dt, is 

dV = 3αVdT ( 9 )
Equation 9 gives us the volume expansion dV of a material of original volume V when

subjected to a temperature change dt. Note that the coefficient of volume expansion is

three times the coefficient of linear expansion. Although we have derived this result for a solid

box it is perfectly general and applies to any volume. We now define a new coefficient,

called the coefficient of volume expansion β, for solids as

β = 3α                                 ( 10 )
Therefore, the change in volume of a substance when subjected to a change in temperature 

is 

dV = βVdT ( 11 )
Equation 11 gives the differential change in volume dV, caused by a differential change

in temperature dt. When dealing with finite quantities, equation 11 is written in the finite form

∆V = βV∆T                      ( 12 )
Although we derived equation 11 for a solid box, it is perfectly general and applies to any

volume of a solid and even for any volume of a liquid. However, since α has no meaning for a

liquid, we must determine β experimentally for the liquid. Just as a hole in a surface area

expands with the surface area, a hole in a volume also expands with the volume of the solid.

Hence, when a hollow glass tube expands, the empty volume inside the tube expands as

though there were solid glass present. The new volume can be found by using the same

calculus approach we used to obtain the final length of the material that culminated withDr. Sajid Alabbasi
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equation 3. Using this same approach we obtain

V = V0 e
α(T−T0) ( 13 )

for the final volume of the material. The final volume can also be found by adding the 

change in volume ∆V to the original volume V0 as

V = V0 + ∆V                           ( 14 )

Example 5

An aluminum box 0.750 m long, 0.250 m wide, and 0.450 m high is at a temperature of 

−15.6 0C. What is the change in volume of the aluminum box when the temperature rises to 

120 0C? If the coefficient of linear expansion for aluminum is αAl = 2.4 × 10−5/0C.

Solution

The original volume of the box, found from equation 8, is

V0 = L1L2L3

V0 = (0.750 m)(0.250 m)(0.450 m)

V0 = 0.0844 m3

The change in volume, found from equation 12, is

∆V = 3αV0∆T

∆V = 3(2.4 × 10−5/0C)(0.0844 m3)(120 0C − (−15.6 0C)

∆V = 0.00082 m3 = 8.24 cm3

The new volume of the box becomes 

V = V0 + ∆V

V =0.0844 m3 +0.00082 m3

V = 0.0852 m3

Again notice that the new volume is very close to the original volume.
Dr. Sajid Alabbasi
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Example 6

An open glass tube is filled to the top with 25.0 cm3 of mercury at an initial temperature of 

20.0 0C. If the mercury and the tube are heated to 100 0C, how  much  mercury will overflow 

from the tube? If βHg = 1.80 × 10−4 /0C  and βgl. = 0.27 × 10−4 /0C

Solution

The change in volume of the mercury, found from equation 12  is 

∆VHg = βHgV0∆T

∆VHg = (1.80 × 10−4/0C)(25.0 cm3)(100 0C − 20 0C)

∆VHg = 0.360 cm3

If the glass tube did not expand, this would be the amount of mercury that overflows. But 

the glass tube does expand and is therefore  capable of  holding a larger volume. The 

increased volume of the glass tube is found from equation 12 but this time with glass     

∆Vgl = βglV0∆T

∆Vgl = (0.27 × 10−4 /0C)(25.0 cm3)(100 0C − 20.0 0C)

∆Vgl = 0.054 cm3

That is, the tube is now capable of holding an additional 0.054 cm3 of mercury. The amount of 

mercury that overflows is equal to the difference in the two volume expansions. That is, 

Overflow = ∆VHg − ∆Vgl

Overflow = 0.360 cm3 − 0.054 cm3

Overflow = 0.306 cm3

Dr. Sajid Alabbasi
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Example 7

The height of the mercury in a barometer is 76.0 cm at an initial temperature of 20.0 0C. If

the actual atmospheric pressure does not change, but the temperature of the air, and hence

the temperature of the mercury and the tube, rises to 35.0 0C, what will the barometer

indicate erroneously for the atmospheric pressure? If βHg = 1.80 × 10−4 /0C and βgl = 0.27 × 10−4

/0C

Solution

The change in volume of the mercury, found from equation 12 is 

∆VHg = βHgV0∆T

But the volume of the mercury in the tube is equal to the cross sectional area A of the tube

times the height h of the mercury in the tube. Hence the volume of the mercury is given by V

= Ah and the change in volume of the mercury can be written as ∆V = A ∆h. Hence the

change in volume of the mercury, equation 12 can now be written as

∆(Ah)Hg = βHg (Aho)(Tf - Ti)

Canceling the cross-sectional area A term from each side of the equation yields the

equation for the change in height of the mercury in the tube caused by the thermal

expansion of the mercury in the tube.

∆hHg = βHg ho(Tf - Ti)

∆hHg = (1.80 × 10−4/0C)(76.0 cm)(35.0 0C − 20 0C) 

∆hHg = 0.205 cm

If the glass tube did not expand, this would be the change in height of the mercury in the

tube and the new height of the mercury in the tube would be

h = h0 + ∆hHg

h = 76.0 cm + 0.205 cm = 76.205 cm
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But the glass tube does expand and is therefore capable of holding a larger volume of

mercury. The increased volume of the glass tube will cause the mercury not to expand as

high and the change in height is found from equation 12 but this time with glass as

∆hgl = βgl ho(Tf - Ti)

∆hgl = (0.27 × 10−4/0C)(76.0 cm)(35.0 0C − 20 0C)

∆hgl = 0.0308 cm

That is, the tube is now capable of holding an additional height of 0.0308 cm of mercury.

The actual height h of the mercury is equal to the original height h0 of the mercury plus the

increase in height ∆hHg caused by the expansion of the mercury minus the decrease in height

∆hgl caused by the expansion of the glass. Hence, the reading of the barometer is

h = h0 + ∆hHg − ∆hg

h = (76.0 cm) + (0.2052 cm) − (0.0308 cm)

h = 76.174 cm

In a weather station the process is actually reversed. The barometer would be read

directly as 76.174 cm of Hg. Then the correction for the thermal expansion of the mercury and

the thermal expansion of the glass would then yield for the actual atmospheric pressure

p = 76.174 cm − (0.2052 cm) + (0.0308 cm) = 76.0 cm of Hg.
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Volume Expansion of Gases: Charles’ Law

Consider a gas placed in a tank, as shown in figure 4 The weight of the piston exerts a

constant pressure on the gas. When the tank is heated, the pressure of the gas first increases.

But the increased pressure in the tank pushes against the freely moving piston, and the piston

moves until the pressure inside the tank is the same as the pressure exerted by the weight of

the piston. Therefore the pressure in the tank remains a constant throughout the entire heating

process. The volume of the gas increases during the heating process, as we can see by the

new volume occupied by the gas in the top cylinder. In fact, we find the increased volume

by multiplying the area of the cylinder by the distance the piston moves in the cylinder.

If the volume of the gas is plotted against the temperature 

of the gas, in Celsius degrees, we obtain the straight line graph

in figure 5. 

If the equation for this straight line is written in the point-slope

Form, we get

V − V0 = m’ (T − T0)

where V is the volume of the gas at the temperature T, V0 is the

volume of the gas at T0 = 0 0C, and m is the slope of the line. We

can also write this equation in the form

∆V = m’ ∆T                           ( 15 )

( Fig. 4 )   
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Note that equation 15, which shows the change in volume 

of a gas, looks like the volume expansion formula 12, for the

change in volume of solids and liquids, that is,

∆V = Βv0 ∆T                 ( 12 )

Let us assume, therefore, that the form of the equation for

volume expansion is the same for gases as it is for solids and 

liquids. If we use this assumption, then

βV0 = m’

Hence the coefficient of volume expansion for the gas is 

found experimentally as

β  = 
m’
V0

where m is the measured slope of the line. If we repeat this experiment many times for many 

different gases we find that

β = 
1

273 0C
=  

3.66 × 10−3

0C

For all noncondensing gases at constant pressure. This result was first found by the French

physicist, J. Charles (1746-1823). This is a rather interesting result, since the value of β is different

for different solids and liquids, and yet it is a constant for all gases. Equation 12 can now be

rewritten as

V − V0 = βV0 (T − T0)
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For all noncondensing gases at constant pressure. This result was first found by the French

physicist, J. Charles (1746-1823). This is a rather interesting result, since the value of β is different

for different solids and liquids, and yet it is a constant for all gases. Equation 12 can now be

rewritten as

V − V0 = βV0(T − T0)

Because T0 = 0 0C, we can simplify this to

V − V0 = βV0 T

and

V = V0 + βV0 T

or

V = V0 (1 + βT)                                (16)

Note that if the temperature T = −273 0C, then

V = V0 [ 1 + (
−273
273

) ] = V0 (1 − 1) = 0 

That is, the plot of V versus t intersects the T-axis at −273 0C, as shown in figure 5. Also

observe that there is a linear relation between the volume of a gas and its temperature in

degrees Celsius. Since β = 1/273 0C, equation 16 can be simplified further into

V = V0 [ 1 + (
T

273
) ] = V0 + [ ( 

273 + T
273

) ] 
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It was the form of this equation that led to the definition of the Kelvin or absolute

temperature scale in the form

TK = T 0C + 273                                           ( 17 )

With this definition of temperature, the volume of the gas is directly proportional to the

absolute temperature of the gas, that is,

V = 
V0

273
TK ( 18 )

Changing the temperature scale is equivalent to moving the vertical coordinate of the

graph, the volume, from the 0 0C mark in figure 5, to the −273 0C mark, and this is shown in

figure 6. Thus, the volume of a gas at constant pressure is directly proportional to the absolute

temperature of the gas. This result is known as Charles’ law.

In general, if the state of the gas is considered at two different temperatures, we have

V1 =
V0

273
TK 1 , and V2 =

V0

273
TK 2 ( Fig. 6 )

Hence,
V0

273
=

V1

TK 𝟏

=
V2

TK 𝟐

Therefore, at p = constant
V1

TK 𝟏

=
V2

TK𝟐
( 19 )

which is another form of Charles’ law. Figures 6 and eq. 19 

are slightly misleading in that they show the variation of the 

volume V with the temperature T of a gas down to −273 0C or 0 K. 
Dr. Sajid Alabbasi

31



However, the gas will have condensed to a liquid and

eventually to a solid way before this point is reached.

A plot of V versus T for all real gases is shown in

figure 7. Note that when each line is extrapolated,

they all intersect at −273 0C or 0 K. Although they all have

different slopes m, the coefficient of volume expansion

(β = m/V0) is the same for all the gases

( Fig. 7 )

Charles' Law (V α T)

The average kinetic energy of the particles in a gas is proportional to the temperature of

the gas. Because the mass of these particles is constant, the particles must move faster as the

gas becomes warmer. If they move faster, the particles will exert a greater force on the

container each time they hit the walls, which leads to an increase in the pressure of the gas. If

the walls of the container are flexible, it will expand until the pressure of the gas once more

balances the pressure of the atmosphere. The volume of the gas therefore becomes larger as

the temperature of the gas increases.

For an ideal gas, the law,

PV = m R T       or PV = n R0 T 

At constant Pressure
V
T

=  
mR
P

=  Constant     or      
V
T

=  
n R0

P
=  Constant

V
T

=  Constant
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Gay-Lussac’s Law

Consider a gas contained in a tank, as shown in figure 8. The tank is made of steel and

there is a negligible change in the volume of the tank, and hence the gas, as it is heated. A

pressure gauge attached directly to the tank, is calibrated to read the absolute pressure of

the gas in the tank. A thermometer reads the temperature of the gas in degrees Celsius. The

tank is heated, thereby increasing the temperature and the pressure of the gas, which are

then recorded. If we plot the pressure of the gas versus the temperature, we obtain the graph

of figure 9. The equation of the resulting straight line is

p − p0 = m’(t − t0)

( Fig. 8 )                                                                  ( Fig. 9 )
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where p is the pressure of the gas at the temperature T, P0 is the pressure at the temperature

T0, and m’ is the slope of the line. The prime is placed on the slope to distinguish it from the

slope determined before.

P − P0 = m’ (T − T0)

Because T0 = 0 0C, this simplifies to

P − P0 = m’ T 

or 

p = m’ T + P0 ( 20 )

It is found experimentally that the slope is

m’ = P0 β

where P0 is the absolute pressure of the gas and β is the coefficient of volume expansion for a 

gas. Therefore equation 20 becomes

p = P0 β T + P0

and

p = P0 (βT + 1)                                 (21 )

Thus, the pressure of the gas is a linear function of the temperature, as in the case of Charles’ 

law. Since β = 1/273 0C this can be written as

p = P0 (
T

273
+ 1)

p = P0 (
T + 273

273
)
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But the absolute or Kelvin scale has already been defined as   TK = T 0C + 273 , therefore, 

equation becomes,

p = P0 (
TK

273
)

Which shows that the absolute pressure of a gas at constant volume is directly proportional

to the absolute temperature of the gas, a result known as Gay-Lussac’s law, in honor of the

French chemist Joseph Gay-Lussac (1778-1850). For a gas in different states at two different

temperatures, we have

P1 = P0 (
TK1

273
) , and P2 = P0 (

TK2

273
)

Then

(
P0

273
) = (

P1

TK𝟏
) = (

P2

TK2
) 

or , at V = constant
P1

TK𝟏
= 

P2

TK2
( 22 )

Equation 22 is another form of Gay-Lussac’s law. (Sometimes this law is also called Charles’

law, since Charles and Gay-Lussac developed these laws independently of each other.)

Gay-Lussac’s Law or called Amonton’s Law (P α T)

The last postulate of the kinetic molecular theory states that the average kinetic energy of

a gas particle depends only on the temperature of the gas. Thus, the average kinetic energy

of the gas particles increases as the gas becomes warmer. Because the mass of these
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particles is constant, their kinetic energy can only increase if the average velocity of the

particles increases. The faster these particles are moving when they hit the wall, the greater

the force they exert on the wall. Since the force per collision becomes larger as the

temperature increases, the pressure of the gas must increase as well.

For an ideal gas, the law,

PV = m R T       or PV = n R0 T 

At constant Volume
P
T

=  
m R
V

=  Constant     or      
P
T

=  
n R0

V
=  Constant

P
T

=  Constant
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Boyle’s Law (P α 1/v)

Consider a gas contained in a cylinder at a constant temperature, as shown in figure 10. By

pushing the piston down into the cylinder, we increase the pressure of the gas and decrease

the volume of the gas. If the pressure is increased in small increments, the gas remains in

thermal equilibrium with the temperature reservoir, and the temperature of the gas remains a

constant. We measure the volume of the gas for each increase in pressure and then plot the

pressure of the gas as a function of the reciprocal of the volume of the gas. The result is shown

in figure 11. Notice that the pressure is inversely proportional to the volume of the gas at

constant temperature. We can write this as

p ∝
1
V

or

PV = constant                                  ( 23 )

( Fig. 10 )                                                       ( Fig. 11 )
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That is, the product of the pressure and volume of a gas at constant temperature is equal

to a constant, a result known as Boyle’s law, in honor of the British physicist and chemist Robert

Boyle (1627-1691). For a gas in two different equilibrium states at the same temperature, we

write this as

P V = constant 

Then

P1 V1 = constant    and      P2 V2 = constant

Therefore, at T = constant

P1 V1 = P2 V2 ( 24 )

Equation 24 is an another form of Boyle’s law

Gases can be compressed because most of the volume of a gas is empty space. If we

compress a gas without changing its temperature, the average kinetic energy of the gas

particles stays the same. There is no change in the speed with which the particles move, but

the container is smaller. Thus, the particles travel from one end of the container to the other in

a shorter period of time. This means that they hit the walls more often. Any increase in the

frequency of collisions with the walls must lead to an increase in the pressure of the gas. Thus,

the pressure of a gas becomes larger as the volume of the gas becomes smaller.

For an ideal gas, the law, At constant Temperature

PV = m R T =  Constant      or PV = n R0 T =  Constant

PV =  ConstantDr. Sajid Alabbasi
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Conclusion

The Ideal Gas Law  ( The three gas laws )

1. At  P = constant
V1

TK 𝟏

= 
V2

TK𝟐
( 19 )

2. At  V = constant
P1

TK𝟏
= 

P2

TK2
( 22 )                                                               

3. At  T = constant

P1 V1 = P2 V2 ( 24)

can be combined into one equation, namely,

P1V1

TK𝟏
= 

P2V2

TK2
( 25 )
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Equation 25 is a special case of a relation known as the ideal gas law. Hence, we see that

the three previous laws, which were developed experimentally, are special cases of this ideal

gas law, when either the pressure, volume, or temperature is held constant. The ideal gas law

is a more general equation in that none of the variables must be held constant. Equation 27

expresses the relation between the pressure, volume, and temperature of the gas at one

time, with the pressure, volume, and temperature at any other time. For this equality to hold

for any time, it is necessary that
PV
T

= constant                         ( 26 )

This constant must depend on the quantity or mass of the gas. A convenient unit to describe

the amount of the gas is the mole. One mole of any gas is that amount of the gas that has a

mass in grams equal to the atomic or molecular mass (M) of the gas. The terms atomic mass

and molecular mass are often erroneously called atomic weight and molecular weight in

chemistry. As an example of the use of the mole, consider the gas oxygen. One molecule of

oxygen gas consists of two atoms of oxygen, and is denoted by O2. The atomic mass of

oxygen is 16.00. The molecular mass of one mole of oxygen gas is therefore

MO2 = 2 (16) = 32 g/mole

Thus, one mole of oxygen has a mass of 32 g. The mole is a convenient quantity to express

the mass of a gas because one mole of any gas at a temperature of 0 0C and a pressure of 1

atmosphere, has a volume of 22.4 liters. Also Avogadro’s law states that every mole of a gas

contains the same number of molecules. This number is called Avogadro’s number NA and is

equal to 6.022 × 1023 molecules/mole.

The mass of any gas will now be represented in terms of the number of moles, n. We can

write the constant in equation 28 as n times a new constant, which shall be called R, that is,

PV  = n R0 T                               ( 27 ) Dr. Sajid Alabbasi
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To determine this constant R0 let us evaluate it for 1 mole of gas at a pressure of 1 atm and a

temperature of 0 0C, or 273 K, and a volume of 22.4 L. That is,

PV = n T R0

(1 atm)(22.4 L)  = (1 mole)(273 K) R0

R0 = 0.08205 atm L / mole K

Converted to SI units, this constant is 

R0 = 0.08205 × ( 1.013×105 N/m2 ) ( 10−3 m3 )   / mole K 

R0 = 8.314      J /  mole K

We call the constant R0 the universal gas constant, and it is the same for all gases. We can 

now write equation 27 as 

PV = n R0 T                        ( 27 )

Equation 27 is called the ideal gas equation. An ideal gas is one that is described by the 

ideal gas equation. Real gases can be described by the ideal gas equation as long as their 

density is low and the temperature is well above the condensation point (boiling point) of the 

gas. Remember that the temperature T must always be expressed in Kelvin units, and

R0 = Rg Mg    ,                   Rg =
R0

Mg
and     n =

m
Mg

Then 

PV = n R0 T = 
m
Mg

(Rg Mg ) T

Equation 27 can now be rewritten as

PV = m Rg T                        ( 28 )

Let us now look at some examples of the use of the ideal gas equation.
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Example 8

Find the temperature of the gas. The pressure of an ideal gas is kept constant while 3.00 m3

of the gas, at an initial temperature of 50.0 0C, is expanded to 6.00 m3. What is the final

temperature of the gas?

Solution

The temperature must be expressed in Kelvin units. Hence the initial temperature becomes 

TK = T 0C + 273 = 50.0 + 273 = 323 K

We find the final temperature of the gas by using the ideal gas equation in the form of 

equation 25, namely, 
P1V1

TK𝟏
= 

P2V2

TK2
( 25 )

However, since the pressure is kept constant, P1 = P2, and cancels out of the equation.

Therefore, obtained equation ( 19 )
V1

TK 𝟏

= 
V2

TK𝟐
( 19 )

and the final temperature of the gas becomes

TK2 = 
V1

V2

TK1

TK2 = 
6.00 m3

3.00 m3 (323 K)

TK2 = 646 K

T2 = 646 K – 273 = 373 0C
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Example 9

Find the volume of the gas. A balloon is filled with helium at a pressure of 2.03 × 105 N/m2,

a temperature of 35.0 0C, and occupies a volume of 3.00 m3. The balloon rises in the

atmosphere. When it reaches a height where the pressure is 5.07 × 104 N/m2, and the

temperature is −20.0 0C, what is its volume?

Solution

First we convert the two temperatures to absolute temperature units as

TK1 = 35.0 0C + 273 = 308 K

and

TK2 = −20.0 0C + 273 = 253 K

We use the ideal gas law in the form ( equation 25 )

P1V1

TK𝟏
= 

P2V2

TK2
( 25 )

Solving for V2 gives, for the final volume,

V2 = ( 
P1

P2

) ( 
TK2

TK𝟏
) V1

V2 = ( 
2.03×105 N/m2

5.07 ×104 N/m2 ) ( 
253 K
308 K

)(3.00 m3)

V2  = 9.87 m3
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Example 10

What is the pressure produced by 2.00 moles of a gas at 35.0 0C contained in a volume of 

5.00 × 10-3 m3 ?

Solution

We convert the temperature of 35.0 0C to Kelvin by

T = 35.0 0C + 273 = 308 K

We use the ideal gas law in the form

PV = n R0 T                        ( 27 )

Solving for P,

P = 
n R0 T

V

P = 
(2.00 moles)(8.314 J /mole K)(308 K)

5.00 × 10−3 m3

P = 1.02 × 106 N/ m2
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Example 11

Compute the number of molecules in a gas contained in a volume of 10.0 cm3 at

a pressure of 1.013 × 105 N/m2, and a temperature of 300 K.

Solution

The number of molecules in a mole of a gas is given by Avogadro’s number NA (6.022×1023 ) 

and hence the total number of molecules N in the gas is given by

N = nNA

Therefore we first need to determine the number of moles of gas that are present. From the

ideal gas law,

PV = n R0 T                        ( 27 )

n = 
PV
R0 T

n =  
[ (1.013×105 N/m2)(10.0 cm3 × 10−6 ) ]

[ (8.314 J/mole K)(300 K) ]

n = 4.06 × 10−4 moles

The number of molecules is now found as

N = nNA = (4.06 × 10−4 mole) 6.022×1023

N = 2.45 × 1020 molecules
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Example 12

An automobile tire has a volume of 81,900 cm3 and contains air at a gauge pressure of 

2.07 × 105 N/m2 when the temperature is 0.00 0C. What is the gauge pressure when the 

temperature rises to 30.0 0C? 

Solution

When a gauge is used to measure pressure, it reads zero when it is under normal

atmospheric pressure of 1.013 × 105 N/m2. The pressure used in the ideal gas equation must be

the absolute pressure ( system pressure ), that is, the total pressure, which is the pressure read

by the gauge plus atmospheric pressure. Therefore,

Pabsolute = Pgauge + Patm

Thus, the initial pressure of the gas is

P1 = Pgauge + Patm

P1 = 2.07 × 105 N/m2 + 1.01 × 105 N/m2

P1 = 3.08 × 105 N/m2

The initial volume of the tire is V1 = 81,900 cm3 and the change in that volume is small enough 

to be neglected, so V2 = 81,900 cm3. The initial temperature and the final temperature are

T1 = 0.00 0C + 273 = 273 K      and     T2 = 30.0 0C + 273 = 303 K

We use the ideal gas law in the form ( equation 25 )
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P1V1

TK𝟏
= 

P2V2

TK2
( 25 )

Solving the ideal gas equation for the final pressure,,  we get

P2 = ( 
V1

V2
) ( 

TK𝟐

TK𝟏
) P1

P2 = ( 
81,900 cm3

81,900 cm3 ) ( 
303 K
273 K

) ( 3.08×105 N/m2 ) = 3.42 × 105 N/m2

Or , we can write at constant volume

P2 = ( 
TK𝟐

TK𝟏
) P1

P2 = ( 
303 K
273 K

) ( 3.08×105 N/m2 ) = 3.42 × 105 N/m2

P2 = 3.42 × 105 N/m2

Where P2 is absolute pressure, expressing this pressure in terms of gauge pressure we get

P2gauge = P2absolute − Patm

P2gauge = 3.42 × 105 N/m2 − 1.01 × 105 N/m2

P2gauge = 2.41 × 105 N/m2
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