

Department of Information Technology 2018-2019

Contents

- Public Key Cryptography
- Key Management

Public Key Crypto system

Objective

- Reason behind development of public key cryptosystem is to handle most difficult problem associated with symmetric ciphers.
 - Key Distribution.
 - Digital signatures.

Public key cryptosystems are the asymmetric ciphers.

The asymmetric ciphers rely on one key for encryption and different but related key for decryption.

- Characteristics of Public key Encryption
 - It is computationally infeasible to determine the decryption key, if knowledge of cryptographic algorithm and encryption key is given.

Components of Public key Encryption

Plaintext

This is the readable message or data that is fed into algorithm as input.

Encryption Algorithm

Is the algorithm performs various transformation on the plaintext.

Public and Private key

- This is pair of keys that have been selected so that if one is used for encryption, the other is used for decryption.
- The exact transformation performed by the algorithm depend on the public or private key that is provided as input.

Cipher text

- This is scrambled message produced as output after transformation on plain text.
- It depends on the plain text and the key.
- Example: for a given message two different keys will produce two different cipher text.

Decryption Algorithm

This algorithm accepts the cipher text and the matching key and produces the original plaintext.

(a) Encryption

12/15/2019

Essential Steps

- Each user generates a pair of keys to be used for the encryption and decryption of message.
- Each user places one of two keys in a public register or other accessible file.
 - This is public key.
 - The companion key is kept private.
 - Each user maintains a collection of public keys obtained from others.
 - Example
 - If Bob wishes to send confidential file to Alice, Bob encrypts the file using Alice public key.
 - When Alice receives the encrypted file, Alice decrypts the file using private key.

In this approach

- All participants have an access to public keys and have private key (generally generated locally)
- Private keys are not distributed.
- As long as private key is protected and secret, incoming communication is secure.
- At any time user can change its private key and publish companion key for public and replaces its old public key.

Applications of Public Key Cryptosystem

- The public key systems are characterized by the use of a cryptographic algorithm with two keys.
 - One held private .
 - One available publically.
- Depending on application, the sender uses either senders private key or receiver's public key or both to perform some type of cryptographic function.
- There are three categories of Public cryptosystem
 - Encryption / Decryption .
 - Digital Signature .
 - Key Exchange .

Encryption / Decryption

The sender encrypts a message with recipient's public key.

Digital signature

- The sender "signs" the message with its private key
- Signing is achieved by a cryptographic algorithm applied to the message or to a small block of data that is function of the message.

Key Exchange

- Two side cooperate to exchange a session key.
- Several different approaches are possible, involving the private key(s) of one or both parties.

- Requirements for Public-Key Cryptography.
 - It is computationally easy for party 'B' to generate a pair
 - Public Key \rightarrow PU_(b)
 - Private key \rightarrow PR_(b)
 - It is computationally easy for sender 'A', knowing the public key and the message to be encrypted, 'M' to generate the corresponding cipher text.

C=E(PU_(b), M)

- It is computationally easy for receiver 'B' to decrypt the resulting cipher text using private key to recover the original message.
 - $M=D(PR_{(b)}, C)=D[PR_{(b)}, E(PU_{(b)}, M)]_{12/15/2019}$

- It is computationally infeasible for an adversary, knowing the public key, PU(b) to determine private key, PR (b)
- It is computationally infeasible for an adversary, knowing the public key, PU(b) and cipher text C to recover original message.
- The two keys can be applied in either order
 - $M=D[PU_{(b)}, E(PR_{(b)}, M)]=D[PR_{(b)}, E(PU_{(b)}, M)]$

Strength and Weakness of Public key

Weakness

- Extremely slow .
- Costly.
- Strengths
 - Solves problem of passing the key.
 - Allows establishment of trust context between the parties.

- Comparison between Asymmetric Cipher and Symmetric Ciphers
 - Asymmetric Cipher
 - Public key Encryption .
 - Two keys are used
 - Public key for encryption .
 - Private key for decryption .
 - Generally slower than symmetric ciphers .
 - Public keys are safe to published anywhere (even on internet) because to get a private key from a public key could take hundred years of work.

Symmetric Ciphers

- Also known as secret key encryption.
- One key is used
 - For encryption and decryption .
- Usually very fast.
- Keys must be kept secured.

RSA Algorithm

- This scheme was devised by Rivest, Shamir and Adlemen.
- Is the most popular public key encryption method.
- Key length for RSA is variable.
- Long key provides more security and short key provides less security but makes the algorithm more efficient.
- Most commonly used key length is 512 bits (64 byte).
- The plain text block must be less than the key length.
- RSA is much slower than DES.

19

Algorithm

Generates two large random primes 'p' and 'q' of approximately equal length such that their product n=pq is of required bit length, and p<>q

Let *n=pq* and *m=(p-1) (q-1)*

- Choose an integer 'e', 1<'e'<m such that gcd(e,m)=1</p>
- Compute the secret exponent 'd', 1<d<m such that</p>

 $d=e^{-1} \pmod{m}$

d.e(mod m) = 1

- The Public key KPU=(e,n)
- The Private key KPR=(d,n)

The values of 'p', 'q' and 'm' should also be kept secret.

- 'n' is known as the modulus
- 'e' is known as encryption exponent
- 'd' is known as decryption exponent

Encryption

- Sender A does the following
 - Obtains recipient B's public key (e,n)
 - Represents the plain message as a positive integer 'M'
 - Computes the cipher text
 C=M^e mod n
 - Sends Cipher text C to B