
Software

Engineering

Professor Dr. Safa Amir Najim

Computer Information System Dept.

College of CS and IT

University of Basrah

2019-2020

Software design based on

GRASP principles
Chapter 7

Design Process

 After identifying your requirements and creating a domain

model, then add methods to the software classes, and define

the messaging between the objects to fulfill the

requirements.

2

What’s GRASP pattern

 GRASP is a General Responsibility Assignment Software

Patterns.

 This approach to understand and use design principles base

on patterns of assigning responsibilities.

 The GRASP patterns are a learning aid to help one

understand essential object design, and apply design

reasoning in a methodical, rational, explainable way.

3

What is responsibility

 Doing:

 Doing something itself, such as creating an object or doing a

calculation

 Initiating action in other objects

 Controlling and coordinating activities in other objects.

 Knowing:

 Knowing about private encapsulated data

 Knowing about related objects

 Knowing about things it can derive or calculate

4

Responsibilities and methods

:Sale

:Payment

makePayment
create

makePayment implies Sale object has a responsibility to create a Payment object

5

GRASP Patterns

6

 Creator

 Information Expert

 Low Coupling

 High Cohesion

 Controller

Creator

7

Creator principle

8

 Problem: Who creates an a object

 Solution: Assign class B the responsibility to create an instance

of class A if one of these is true

B “contains or aggregate ” A

B “records” A

B “closely uses” A

B “ has the Initializing data for ” A

Problem

Who should create a SalesLineItem?

Sale

time

Sales

LineItem

quantity

Product

Description

description

price

itemID

Described-by*

Contains

1..*

1

1

9

10

Creating a SalesLineItem

: Register : Sale

makeLineItem(quantity)

: SalesLineItem
create(quantity)

Sale objects are given a responsibility to create SaleLineItem.
The responsibility is invoked with a makeLineItem message

11

Creating a SalesLineItem

12

Information Expert

13

Information Expert

Problem : What is a basic principle by which to assign responsibilities to

objects?

Solution (advice) : Assign a responsibility to the information expert , that is

the class with the information necessary to fulfill the responsibility.

“Objects do things related to the information they have.”

14

Sale

time

Sales

LineItem

quantity

Product

Description

description

price

itemID

Described-by*

Contains

1..*

1

1

Who should be responsible for knowing/getting the grand
total of a sale?

15

16

Who is responsible for knowing the grand total of a sale?

Partial interaction and class diagrams

Sale

time

...

getTotal()

:Sale
t = getTotal

New method

 Add a Sale class to the Design Model.

 Express responsibility of knowing the total of a sale with the method named getTotal.

What information do we need to know to determine the line item
subtotal?

Sale knows about neighbours (associations), SaleLineitems who is
responsible for knowing its subtotal

17

SalesLineItem is Expert for Subtotal

Sale

time

...

getTotal()

SalesLineItem

quantity

getSubtotal()New method

1 *: st = getSubtotal
: Sale

t = getTotal lineItems[i] :

SalesLineItem

this notation will imply we

are iterating over all

elements of a collection

How does the SalesLineItem find out the product price?

SaleLineItem knows about neighbours (ProductDescription) to
get the price.

18

ProductDescription is Expert for Price

Sale

time

...

getTotal()

SalesLineItem

quantity

getSubtotal()

Product

Description

description

price

itemID

getPrice()New method

:Product

Description

1.1: p := getPrice()

1 *: st = getSubtotal
: Sale

t = getTotal lineItems[i] :

SalesLineItem

“Partial” information experts collaborate to fulfill the responsibility.

19

Low Coupling Principle

20

“Low Coupling” Principle

21

Problem:

How to support low dependency, Low change

impact, and increased reuse?

Solution: Assign responsibilities so that coupling

remains low. Use this principle to evaluate alternatives.

Coupling is a measure of how strongly one class is

• connected to,

• has knowledge of, or

• relies upon other classes.

What is a coupling ?

22

Coupling between classes is dependency of one

class on another class

What is the problem if Register creates Payment

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

Register is coupled to both Sale and Payment.

23

What will be happen if Sale creates Payment ?

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

 Assuming that the Sale must eventually be coupled to
knowledge of a Payment, having Sale create the Payment does
not increase coupling.

NB : Low Coupling and Creator may suggest different solutions.

24

High Cohesion

25

High Cohesion

26

A class with low cohesion does too much unrelated
work and are:

• Hard to comprehend
• Hard to reuse.
• Hard to maintain.
• Delicate and constantly affected by change

Cohesion is a measure of how strongly related the responsibilities of
an element (classes, subsystems) are.

High Cohesion

 Problem

 How to keep complexity manageable?

 Solution

 Assign a responsibility so that cohesion remains high

27

Reduced cohesion of Register(creator pattern)

: Register : Sale

addPayment(p)

p : Payment
create()

makePayment()

Low cohesion:

Register is taking part of the responsibility for fulfilling “makePayment” operation
and many other unrelated responsibility (50 system operations all received by
Register). Thus, it will become burden with tasks and become incoherent

28

Better solution

Higher Cohesion and Lower Coupling

: Register : Sale

makePayment()

 : Payment
create()

makePayment()

Solution:

Delegate the payment creation responsibility to “Sale” to support high cohesion

29

Controller Pattern

30

Controller Pattern

31

UI layer does not contain any business logic

Problem:

How to connect UI layer to the business logic layer?

Solution:

If a program receive events from external sources other

than its graphical interface, add an event class to

decouple the event source(s) from the objects that

actually handle the events.

Controller Pattern

What first object beyond the UI layer receives and

coordinates (“controls”) a system operation message?

 Solution: Assign the responsibility to a class that represents one of the

following options:

32

Options for Control Responsibility

1. Representing the overall system or a root object.

e.g., an object called System or Register

Suitable when there are not too many system events or when UI

cannot choose between multiple controllers.

2. A controller for each use case

33

What should be Controller for enterItem?

Which class of object should be responsible for receiving this

system event message?

It is sometimes called the controller or coordinator. It does not

normally do the work, but delegates it to other objects.

The controller is a kind of "facade" onto the domain layer from

the interface layer.

actionPerformed(actionEvent)

: ???

: Cashier

:SaleJFrame

presses button

enterItem(itemID, qty)

UI Layer

Domain

Layer

system operation message

34

Bad Design

Cashier

:SaleJFrame

actionPerformed(actionEvent)

:Sale
1: makeLineItem(itemID, qty)

UI Layer

Domain Layer

It is undesirable for an interface

layer object such as a window to get

involved in deciding how to handle

domain processes.

Business logic is embedded in the

presentation layer, which is not useful.

SaleJFrame should not

send this message.

presses button

35

Good Design

actionPerformed(actionEvent)

:Register

: Cashier

:SaleJFrame

presses button

1: enterItem(itemID, qty)

:Sale
1.1: makeLineItem(itemID, qty)

UI Layer

Domain Layer

system operation message

controller

Controller should delegate the work that needs to be done to other

objects.

36

37

