
Software

Engineering

Professor Dr. Safa Amir Najim

Computer Information System Dept.

College of CS and IT

University of Basrah

2019-2020

Functional Modeling
Chapter 4

Systems, Models, and Views

 A model is an abstraction describing system or a subset of a

system

 A view depicts selected aspects of a model

 A notation is a set of graphical or textual rules for

representing views

 Views and models of a single system may overlap each other

2

Systems, Models, and Views

System
View 1

Model 2
View 2

View 3

Model 1

Airplane

Flightsimulator

Scale Model

Blueprints

Electrical

Wiring

3

Models, Views, and Systems

View
**

depicted bydescribed by

System Model

flightSimulator:ModelscaleModel:Model

blueprints:View

airplane:System

fuelSystem:View electricalWiring:View

4

Why model software?

Software is already an abstraction: why model software?

 Software is getting larger, not smaller

 NT 5.0 ~ 40 million lines of code

 A single programmer cannot manage this amount of code in its

entirety.

 Code is often not directly understandable by developers who

did not participate in the development

 We need simpler representations for complex systems

 Modeling is a mean for dealing with complexity

5

Concepts and Phenomena

 Phenomenon: An object in the world of a domain as you perceive

it, for example:

 The lecture you are attending

 Concept: Describes the properties of phenomena that are

common, for example:

 Lectures on software engineering

 A concept is a 3-tuple:

 Its Name distinguishes it from other concepts.

 Its Purpose are the properties that determine if a phenomenon is a

member of a concept.

 Its Members are the phenomena which are part of the concept.

6

Concepts and Phenomena

 Abstraction: Classification of phenomena into concepts

 Modeling: Development of abstractions to answer specific
questions about a set of phenomena while ignoring irrelevant
details.

MembersName

Clock

Purpose

A device that
measures time.

7

Concepts In Software: Type and Instance

 Type:
 An abstraction in the context of programming languages
 Name: int, Purpose: integral number, Members: 0, -1, 1, 2,
-2, . . .

 Instance:
 Member of a specific type

 The type of a variable represents all possible instances the variable
can take.

 The relationship between “type” and “instance” is similar to that of
“concept” and “phenomenon.”

 Abstract data type:
 Special type whose implementation is hidden from the rest of the

system.

8

Class

 Class:

 An abstraction in the context of object-oriented languages

 Like an abstract data type, a class encapsulates both state

(variables) and behavior (methods)

 Unlike abstract data types, classes can be defined in terms of

other classes using inheritance
Watch

time
date

CalculatorWatch
SetDate(d)

EnterCalcMode()
InputNumber(n)

calculatorState

9

Object-Oriented Modeling

Application Domain Solution Domain

Application Domain Model System Model

Aircraft
TrafficController

FlightPlan
Airport

MapDisplay

FlightPlanDatabase

SummaryDisplay

TrafficControl

TrafficControl

10

 Use case diagrams
 Describe the functional behavior of the system as seen by the user.

 Class diagrams
 Describe the static structure of the system: Objects, Attributes, and

Associations.

 Sequence diagrams
 Describe the dynamic behavior between actors and the system and between

objects of the system.

 Statechart diagrams
 Describe the dynamic behavior of an individual object as a finite state

machine.

 Activity diagrams
 Model the dynamic behavior of a system, in particular the workflow, i.e. a

flowchart.

11

Use Case Diagrams

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

Actor

Use case

Package
SimpleWatch

Use case diagrams represent the functionality of the system

from user’s point of view
12

Class Diagrams

Battery

load()

Time

now()

PushButton

state

push()

release()

blinkIdx

blinkSeconds()

blinkMinutes()

blinkHours()

stopBlinking()

referesh()

LCDDisplay

SimpleWatch

Class

Attributes

Operations

Class diagrams represent the structure of the system

13

Use Case Diagrams

Used during requirements elicitation to

represent external behavior

 Actors represent roles, that is, a type of

user of the system

 Use cases represent a sequence of

interaction for a type of functionality

 The use case model is the set of all use

cases. It is a complete description of the

functionality of the system and its

environment

Passenger

PurchaseTicket

14

Actors
 An actor models an external entity which

communicates with the system:

 User

 External system

 Physical environment

 An actor has a unique name and an optional

description.

 Examples:

 Passenger: A person in the train

 GPS satellite: Provides the system with GPS coordinates

Passenger

15

Use Case
A use case represents a class of functionality

provided by the system as an event flow.

A use case consists of:

 Unique name

 Participating actors

 Entry conditions

 Flow of events

 Exit conditions

 Special requirements

PurchaseTicket

16

Use Case Example

Name: Purchase ticket

Participating actor: Passenger

Entry condition:

 Passenger standing in front of

ticket distributor.

 Passenger has sufficient money

to purchase ticket.

Exit condition:

 Passenger has ticket.

Event flow:

1. Passenger selects the number of

zones to be traveled.

2. Distributor displays the amount

due.

3. Passenger inserts money, of at

least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

17

The <<extend>> Relationship

 <<extend>> relationships represent

exceptional or seldom invoked cases.

 The exceptional event flows are factored

out of the main event flow for clarity.

 Use cases representing exceptional flows

can extend more than one use case.

 The direction of a <<extend>>

relationship is to the extended use case

Passenger

PurchaseTicket

TimeOut

<<extend>>

NoChange

<<extend>>OutOfOrder

<<extend>>

Cancel

<<extend>>

18

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extend>>

Cancel

<<extend>>

<<include>>

CollectMoney

<<include>>

The <<include>> Relationship

 An <<include>> relationship

represents behavior that is

factored out of the use case.

 An <<include>> represents

behavior that is factored out for

reuse, not because it is an

exception.

 The direction of a

<<include>> relationship is

to the using use case (unlike

<<extend>> relationships).

19

Class Diagrams

 Class diagrams represent the structure of the system.

 Class diagrams are used

 during requirements analysis to model problem domain concepts

 during system design to model subsystems and interfaces

 during object design to model classes.

Enumeration getZones()

Price getPrice(Zone)

TariffSchedule

* *

Trip

zone:Zone

price:Price

20

Classes

 A class represent a concept.
 A class encapsulates state (attributes) and behavior (operations).
 Each attribute has a type.
 Each operation has a signature.
 The class name is the only mandatory information.

zone2price

getZones()

getPrice()

TariffSchedule

Table zone2price

Enumeration getZones()

Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

Instances

 An instance represents a phenomenon.

 The name of an instance is underlined and can contain the class of

the instance.

 The attributes are represented with their values.

zone2price = {

{‘1’, .20},

{‘2’, .40},

{‘3’, .60}}

tariff_1974:TarifSchedule

Actor vs. Instances

 What is the difference between an actor and a class and an

instance?

 Actor:

 An entity outside the system to be modeled, interacting with

the system (“Pilot”)

 Class:

 An abstraction modeling an entity in the problem domain,

inside the system to be modeled (“Cockpit”)

 Object:

 A specific instance of a class (“Joe, the inspector”).

23

Associations

 Associations denote relationships between classes.

 The multiplicity of an association end denotes how many objects

the source object can legitimately reference.

Enumeration getZones()

Price getPrice(Zone)

TarifSchedule

*
price

zone

TripLeg

*

1-to-1 and 1-to-Many Associations

1-to-1 association

1-to-many association

*

draw()

Polygon

x:Integer

y:Integer

Point1

Has-capital

name:String

Country

name:String

City
11

25

Generalization

 Generalization relationships denote inheritance between classes.

 The children classes inherit the attributes and operations of the

parent class.

 Generalization simplifies the model by eliminating redundancy.

Button

ZoneButtonCancelButton

26

From Problem Statement to Code

Problem Statement

A stock exchange lists many companies. Each company is

identified by a ticker symbol

Class Diagram

Java Code
public class StockExchange {

public Vector m_Company = new Vector();

};

public class Company {

public int m_tickerSymbol;

public Vector m_StockExchange = new Vector();

};

*StockExchange

tickerSymbol

Company*

lists

27

Activity Diagrams

 An activity diagram shows flow control within a system

 In activity diagram, the states are activities (“functions”)

 Two types of states:

 Action state:
 Cannot be decomposed any further

 Happens “instantaneously” with respect to the level of abstraction used in the model

 Activity state:
 Can be decomposed further

 The activity is modeled by another activity diagram

Handle
Incident

Document
Incident

Archive
Incident

28

Activity Diagram: Modeling Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

29

Activity Diagrams: Modeling Concurrency

 Synchronization of multiple activities

 Splitting the flow of control into multiple threads

SynchronizationSplitting

Archive
Incident

Open
Incident

Document
Incident

Allocate
Resources

Coordinate
Resources

30

Activity Diagrams: Swimlanes

 Actions may be grouped into swimlanes to denote the object

or subsystem that implements the actions.

Archive
Incident

Dispatcher

FieldOfficer

Open
Incident

Document
Incident

Allocate
Resources

Coordinate
Resources

31

