Computer Programming1 Academic Year 2018-2019

Functions

A program can be thought of as consisting of subparts, such as obtaining the input data, calculating
the output data, and displaying the output data. These subparts are called functions.

Functions come in two types :

1- Predefined functions (or built in functions) : They can be defined by the built in as part of the
compiler package .

2- User —defined functions: They can be defined by the user.

Top —Down Design

The top-down design strategy is an effective way to design an algorithm for a program. In this
strategy you divide the program’s task into subtasks and then implement the algorithms for these
subtasks as functions.

4+ top-down design would make the program easier to understand, easier to change if need be, and
as will become apparent, easier to write, test, and debug.

4+ One of the advantages of using functions to divide a programming task into subtasks is that
different people can work on the different subtasks.

+ C++, like most programming languages, has facilities to include separate subparts inside of a

program. In other programming languages these subparts are called subprograms, procedures, or
methods, while in C++ these subparts are called functions.

Predefined Functions (or built-in functions)
The Built-in functions are declared in header files using the form:
#include <directive which contain predefined function file>
e.g. for common mathematical calculations we include the file math with the following statement:

#include <math.h> //directive which contains the function prototypes for the
mathematical functions in the math library.

Mathematical functions

Math library functions allow the programmer to perform a number of common
mathematical calculations:

37

Computer Programming1 | Academic Year 2018-2019

Function Description
sqrt(x) square root
sin(x) trigonometric sine of x (in radians)
trigonometric cosine of x (in
cos(x) .
radians)
trigonometric tangent of x (in
tan(x) .
radians)
log(x) natural logarithm of x (base e)

log10(x) logarithm of x to base 10

abs(x) absolute value (unsigned)
ceil(x) rounds x up to nearest integer
floor(x) rounds x down to nearest integer

pow(x,y) |Ix raised to powery

exp(x) exponential function |

Example 1: By using predefined function, Write program that find x values from the equation:

- —bxB —dac
2a

where:

o 30 B ladl ot o Ladh 5 g5l
ax” +bhx+c=0
ca =10 b i
oS
O
2a

SMalalt b S
it JSea X g

Example 2 : write program that find and print z value as fallow :

sin(a) + cos(b) x=1
_J)Va—-e® +2 x=2
zZ =
a® x=3
|la| + |b| x=4

38

Computer Programming1 Academic Year 2018-2019

User- defined functions

A function is a group of statements that together perform a task. Every C++ program has at least one
function, which is main.

To understand functions we must understand the following terms

1- Function definitions

2- Function Declarations

3- Calling a Function

4- Function Arguments

5- Default Values for Parameters

Function definitions
There are two type of user-defined functions:
O First type: Return one value by its name function
Uses: use when we need a function that calculate and return just ONE value
[there are no input (cin) or output (cout) statements]

Define:
List of formal parameters names and their types

type of data that the Identifier of function that receive the values of the arguments

function returns name

return-type function-name(parameter list)

{
// body of the function

return data;

Note: : The return _type of the function may be (int, float, char, etc.)

Example : int function-name (parameters-list)

U Second type: Not return any value by its name (Void Function)
Uses: use when we need a function that calculate and return more than ONE value
or do subtask, we can here use input (cin) or output (cout) statements.

Define:
List of formal parameters names and their types
Identifier of function that receive the values of the arguments

name

void function-name(parameter list)

{
// body of the function

39

Computer Programming1 Academic Year 2018-2019

Example: void function-name (parameters-list)

Example : Following is the source code for a function called max(). This function takes two parameters numl
and num2 and returns the maximum between the two:

// function returning the max between two numbers
int max(int num1, int num2)
{
// local variable declaration
int result;
if (num1 > num?2)
result = numi;
else
result = num2;

return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The actual body

of the function can be defined separately.

A function declaration has the following parts:

return_type function_name(parameter list);
or
void function_name(parameter list);

For the above defined function max(), following is the function declaration:

int max(int numi, int num2);

Notes :
O Parameter names are not important in function declaration only their type is required, so following is
also valid declaration:

int max(int, int);

O Function declaration is required when you define a function in one source file and you call that function
in another file or you define function after main function. In such case, you should declare the function
at the top of the file calling the function.

40

Computer Programming1

Academic Year 2018-2019

U There are two ways to write the declaration and definition of function depending on their place in

program

include <iostream.h>
//Function declaration ;
void main()

{

// function call

}

//Function definition

include <iostream.h>
// Function definition
void main()

{

//function call

}

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To use a function, you will

have to call or invoke that function.

» When a program calls a function, program control is transferred to the called function.

» A called function performs defined task and when its return statement is executed or when its function-

ending closing brace is reached, it returns program control back to the main program.

» To call a function, you simply need to pass the required parameters along with function name, and if

function returns a value, then you can store returned value. For example:

Using wayl

#include <iostream>
int max(int, int);
int main ()
{
// local variable declaration:
int a=100;
intb = 200;
int ret;
// calling a function to get max value.
ret = max(a, b);
cout << "Max value is : " <<ret << end|;
return 0;
}
int max(int numi, int num2)
{
// local variable declaration
int result;
if (num1 > num2)
result = numi;
else
result = num2;
return result;

Using Way 2
#include <iostream>
int max(int num 1, int num2)
{
// local variable declaration
int result;
if (num1 > num?2)
result = numil;
else
result = num2;
return result;
}
int main ()
{
// local variable declaration:
int a=100;
int b = 200;
int ret;
// calling a function to get max value.
ret = max(a, b);
cout << "Max value is : " << ret << endl;
return 0;

41

Computer Programming1 Academic Year 2018-2019

After running the source code it would produce the following result:

Max value is : 200
Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the arguments.
These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created upon
entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function:

Call Type Description

Call by value This method copies the actual value of an argument into the formal

parameter of the function. In this case, changes made to the parameter

(IN-ONLY) inside the function have no effect on the argument.

Call by reference This method copies the reference of an argument into the formal
parameter. Inside the function, the reference is used to access the actual
(IN-OUT) argument used in the call. This means that changes made to the
parameter affect the argument.

Note: By default, C++ uses call by value to pass arguments. In general, this means that code within a function
cannot change the arguments used to call the function .

» A function definition has a name, parentheses pair containing zero or more parameters and a
body.

» For each parameter, there should be a corresponding declaration that occurs before the body.
Any parameter not declared is taken to be an integer by default.

The Return one value by its name function:
Parameters type
= (call by value): copies the value of argument (actual parameter) into formal parameter of
the function. In this case, changes made to the parameter have no effect on the arguments.

Call :
= We can write the function name with its arguments in any place can put a variable of the
same type.
® Syntax:
Function_name(argument 1, argument 2,..., argument n);
T N g
—_—
Identifier or function name actual parameters

42

Computer Programming1 Academic Year 2018-2019

Return Statement :

= The keyword return is used to terminate function and return a value to its caller.
= The return may also be used to exit a function without returning a value.

= |ts may or may not include on expression.

= |ts general syntax is:

return ;
return (exp);

The return statements terminate the exaction of the function and pass the control back to the calling
environment.

Call Examples :
= Assignment statement : a = sum (n, m);

= |f statement: if (sum (n, m) >=4)

= QOutput statement: cout << sum (n, m);

» Not return by its name (Void Function) : It uses when we need a function that calculate and
return more than one values or do special subtask

Define:

Identifier of function name

function-name(type paral, type para2, ..., type para n)

{ Formal parameters

// body of the function List of parameters names and their
types that recerve or send (or

} both) the values of the arguments

from (or to) the main program

Parameters type:

1. call by value (IN-only): copies the value of argument (actual parameter) into formal
parameter of the function. In this case, changes made to the parameter have no effect on
the arguments.

2. call by reference(INO-out): the address of an argument is copied into the parameter. Inside
the function, the address is used to access the actual argument used in the call. This means
that changes made to the parameter affect the argument.

43

Computer Programming1 Academic Year 2018-2019

Call :
= We can write the function name with its arguments in any place can put a variable of
the same type.

® Function_name(argument 1, argument 2,..., argument n);

N— —
—_—

Identifier or function name actual parameters

Exercies:

1. Write C++ program that use function named powfun() that raises an integer number passed to it
to a positive integer power and returns the result as an integer.

2. Write C++ program can swap between two variables using function:

3. Write C++ program using a functions to read sequence of positive number, then print each
number with it factorial.

4. Write C++ program using a functions to read n of integer number, then print the summation and
average of even and odd numbers.

5. Write C++ program using function to calculate the average of two numbers entered by the user .

6. Write C++ program to calculate the squared value of a number passed from main program.

calculate the square of numbers from 1 to 10.

Functions Questions
Design the findMax() function accepts two double arguments (numberl and number2) and return
the max number.

Design a function named findAbs() that accepts a double number passed to it and returns that
number’s absolute value.

Design a function named mult() that accepts two floating-point numbers as parameters, multiplies
these two numbers, and returns the result.

Design a function named square() that computes and returns the square of the integer value passed
toit.

Design A function named powfun() that raises an integer number passed to it to a positive integer
power and returns the result as an integer.

Design a function named table() that produces a table of numbers from 1 to 10, their squares, and
their cubes.

44

Computer Programming1 Academic Year 2018-2019

7. Design a function named check() that accept two integer numbers as parameters, the function
return "ok" if the second number is factorial of first number otherwise the function return "not
Okll

8. Design a function to read sequence of number (N), then print the times repeat of a specific number.
9. Design a function to read sequence of number, then print each number with it factorial.

10. Design a function to generate N term of fibo series:
112358 13...

Solve All Previous Questions and Examples by using Function Concept.

Default Values for Parameters

When you define a function, you can specify a default value for each of the last
parameters. This value will be used if the corresponding argument is left blank when calling to the
function.

This is done by using the assignment operator and assigning values for the arguments in
the function definition.

If a value for that parameter is not passed when the function is called, the default given
value is used, but if a value is specified, this default value is ignored and the passed value is used
instead.

Consider the following example:

#include <iostream.h>
int sum(int a, int b=20) {
int result;
result=a+b;
return (result); }
int main () {
// local variable declaration:
inta =100;
int b = 200;
int result;

// calling a function to add the values.
result = sum(a, b);
cout << "Total value is :" << result << endl;

// calling a function again as follows.
result = sum(a);

cout << "Total value is :" << result << end|;

return 0;

45

Computer Programming1 Academic Year 2018-2019

When the above code is compiled and executed, it produces the following result:

Total value is :300

Total value is :120

Scope rule of an Identifier

scope (of an identifier) the range of program statements within which the identifier is
recognized as a valid name

C++ Scope Rules
1. Every identifier must be declared and given a type before it is referenced (used).
2. The scope of an identifier begins at its declaration.

3. Ifthe declaration is within a compound statement, the scope of the identifier ends at
the end of that compound statement. We say the identifier is local to that compound
statement (or block).

4. If the declaration is not within a compound statement, the scope of the identifier ends
at the end of the file. We say the identifier has global scope.

Variables definition in the Functions
There are three types of variables definition:
1. Local variable: every variable defined in any function is called local for this function, so it is
valid just in this function but not valid in the other functions.

2. Global variable: every variable defined in the beginning of the program before main and
any function is called global. it is valid in all the program.

3. Not-Local variable: every variable defined outside the functions and before some functions
is called Not-local. This variable is valid in all functions written after this variable definition
But not valid in all functions written before.

include <igstream.h>
intv: /v is global variable we can use v in all functions and main

void sum (intm, infn)
{intx; /% is local variable we can use x in the function sum only

-

/*kis NOT local but Not global variablewecanuse kin
intk; all functions down this definition with also main */

void test (int m, intn)

()

void main ()

{inty: // v is local use only in the function main
¥

46

Computer Programming1

Academic Year 2018-2019

#include <iostream.h>
intk=10;
voida ()

{ints=6; —

}
intv=4;
void b()

{

}

main ()
{
a();
b();
cout << “k= "<<k=<<endl;

}

cout<<“S="<< s << ffff/ k= "<<k<<endl;

cout<<” V= "<<v<<" fffff k= "<<k<<endl;

~— kis Global Variable

- Sis Local Variable

v is not (Global or
Local Variables)

S
U

10
10

6 /77 K
W/l K
10

k

#include <jostream.h>

volid Fl{double c);
const int a b i
int b;
int &;

int main() {

return 0;

1

void F (double c) |
double b;

b = 3.2;

cout << "z << a;
cout << *p W = T
cout << "gC i L S ¥
int &;

a = §2;

cout << "a " <<€ aj;

what is the scope of each
declared identifier?

47

Computer Programming1

Academic Year 2018-2019

Choosing a Parameter Passing Mechanism

Pass-by-Reference

value of the parameter

Pass-by-Constant-Reference

use only if the design of the called function requires that it be able to modify the

Pass-by-Value

use if the called function has no need to modify the value of the parameter, but the
parameter is very large (e.g.. a string or a structure or an array, as discussed later)
use as a safety net to guarantee that the called function cannot be written in a way
that would modify the value passed in*

use in all cases where none of the reasons given above apply
pass-by-value is safer than pass-by-reference

* Note that if a parameter is passed by value, the called function may make changes to that
value as the formal parameter is used within the function body. Passing by constant reference
guarantees that even that sort of internal modification cannot occur.

Pass-by-Value
- default passing mechanism except for one special case discussed later
- a temporary memary
- copy the value of the

ter into that location

ponding actual

Parameters Pass

for each formal parameter (when function is called)

- «called function has no access fo the actual parameter. just to a copy of its value

Pass-by-Reference

- put ampersand (&) after formal parameter type in prototype and definition

- forces the corresponding actual and formal parameters to refer to the same memory location;
that is, the formal parameter is then a synonym or alias for the actual parameter

- called function may modify the value of the actual parameter

and destroyed on return

Variable Value
int First = 1%, First
Second = 43; i
. Le o = . Seeord Variable Value
int Least = FindMinimum{First, Second)j i Firs = 15 0
o Least (R S ERRy First
Second = 42;
int FindMinimum(int A, int B) |\‘ Vanable Value SwapEm(Firast, Second); Second
£ (A <= B)
: A ‘)) \
retuzn A;
=lse B
void SwapEm{int& A, int& B) {
return By
C_ ‘ Created when call occurs int TempInt;

TempInt = A;
A = B;
B = Templnt;

Templnt

Pass-by-Constant-Reference

location: just as in pass-by-reference

such a statement as an error

- precede tormial pafameter type with Kéyword const, tollow it with an ampersand (&)
- forces the cormesponding actual and formal parameters to refer to the same primary memory

- but, the called function is not allowed to modify the value of the parameter; the compiler flags

Variable Value
int First = 15, F n
Irs
Second = 42, -
Third; Second <
Third = AddEm(First, Second); Tl‘ltl‘d
int AddEm(const int& A, const int& B) \ Variable Value
int Sum; A
Sum = A + B;
B
return Sum;
. Sum

Computer Programming1

Academic Year 2018-2019

Parameters Restrictions

With pass by value, the
actual parameter can be an
expression (or a variable or
a constant):

F = CalcForce (mass *

With pass by reference and
pass by constant reference,
the actual parameter

must be an /-value; that is,
something to which a value
can be assigned.

That rules out expressions
and constants.

deouble CalcForce(int Weight,

int Height) |

g, h);

void getRGB(ints Red,

inte Green,

inte Blue) |

Parameter communication Trace

const int = 100;
int X =10, Y= 20, Z =
volid Mix(int P, ints Z);
Mix (X, ¥);
cout << W << X << Y <«
Mix (Z, X);
cout << W << X << ¥ <<
return 0;
void Mix (int P, inte
int Y=0, W= 0;
Y = P;
W= Z;
Z=2Z + 10;

out << P << W << ¥ <<

30;
-J -"’
Z << endl; [/
/
Z << endl; i
2) i !
I
Iy,
'

Z << endl;

i B g el

¥
o N

IS I

-l o n

o

Ve

= O

Memory space for main():

N|<|®|=

Memory space for Mix ():

P

Z

}

W

Output

49

