Infinite Sequences:

A sequence is a list of numbers a_1 , a_2 , a_3 , \cdots , a_n , \cdots in a *given order*. For example the sequence 3, 6, 12, 24, 48, ..., $3(2^{n-1})$, ... has 1^{st} term $a_1 = 3$, 2^{nd} term $a_2 = 6$, 3^{rd} term $a_3 = 12$,...., the nth term $a_n = 3(2^{n-1})$.

Definition (1): (Sequence)

An infinite sequence of numbers is a function whose domain is the set of positive integers.

How can described Sequences?

1: By writing rules that specify their terms, such as $a_n = \sqrt{n}$, $b_n = \frac{1}{n}$.

2: By listing terms:

$$\{a_n\} = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, \cdots, \sqrt{n}, \cdots\}, \{b_n\} = \{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots\}.$$

3: By writing its rules as: $\{a_n\} = \{\sqrt{n}\}_{n=1}^{\infty}$, $\{b_n\} = \{\frac{1}{n}\}_{n=1}^{\infty}$.

Representation Sequences Graphically

There are two ways:

1: Marks the first few points $a_1, a_2, a_3, \dots, a_n, \dots$ on the real axis.

2: Shows the graph of the function defining the sequence.

The function is defined only on integer inputs, and located at $(1, a_1)$, $(2, a_2)$,

$$(3,a_3),\cdots,(n,a_n),\cdots$$

Example (1): Graph the following sequences:

A:
$$\{a_n\} = \{2n\}$$

Solution: a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_9

(2):

B:
$$\{b_n\} = \{n^2\}$$

Solution: (H.W.)

Convergence and Divergence

Definition (2):

The sequence $\{a_n\}$ converges to the number L if for every $\epsilon>0$ there is an integer N such that $|a_n-L|<\epsilon$ whenever n>N.

If no such number L exists, we say that $\{a_n\}$ diverges.

Note: If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty}a_n=L$ or simply $a_n\to L$ and call L the limit of the sequence.

Definition (3):

The sequence $\{a_n\}$ diverges to $(+\infty)$ if for every number M there is an integer N such that for all n>N, $a_n>M$. If this condition holds, we write $\lim_{n\to\infty}a_n=\infty$ or $a_n\to\infty$.

Definition (4):

The sequence $\{a_n\}$ diverges to $(-\infty)$ if for every number m there is an integer N such that for all n > N, $a_n < m$. If this condition holds, we write $\lim_{n \to \infty} a_n = -\infty$ or $a_n \to -\infty$.

Calculating Limits of Sequences

Theorem (1):

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers and A & B are real numbers such that $\lim_{n \to \infty} a_n = A \& \lim_{n \to \infty} b_n = B$. Then the following rules hold.

1:
$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n = A \pm B$$
.

2:
$$\lim_{n \to \infty} k \, a_n = k(\lim_{n \to \infty} a_n) = kA$$
. ((k is a constant))

3:
$$\lim_{n\to\infty} (a_n \cdot b_n) = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n) = AB$$
.

4:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{A}{B} if B \neq 0.$$

Example (2): Find the following limits:

1:
$$\lim_{n \to \infty} \left\{ \frac{2}{n} \right\} = 2 \left(\lim_{n \to \infty} \left\{ \frac{1}{n} \right\} \right) = 2(0) = 0.$$

$$2: \lim_{n \to \infty} \left(\frac{n-1}{2n}\right) = \lim_{n \to \infty} \left(\frac{n}{2n}\right) - \lim_{n \to \infty} \left(\frac{1}{2n}\right) = \lim_{n \to \infty} \left(\frac{1}{2}\right) - \frac{1}{2} \left(\lim_{n \to \infty} \frac{1}{n}\right) = \frac{1}{2}.$$

3:
$$\lim_{n\to\infty} \left(\frac{4n+6n^2}{2n^2+5}\right) = \lim_{n\to\infty} \frac{\frac{4}{n}+6}{2+\frac{5}{n^2}} = \frac{0+6}{2+0} = 3.$$

Notes:

1: There are two divergent sequences but their sum converge.

For example, $\{a_n\} = \{1, 2, 3, ..., n, ...\}$ and

$$\{b_n\}=\{-1,-2,-3,\ldots,-n,\ldots\}$$
 are divergent sequences but the sequence $\{c_n\}=\{a_n+b_n\}=\{0,0,0,\ldots,0,\ldots\}$ converges to the number zero.

2: If the sequence $\{a_n\}$ diverges and the number $k \neq 0$ then the sequence $\{ka_n\}$ diverges also.