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Abstract

In this study, we discussed the finite difference method, it is techniques used
to solve differential equations. The first chapter explains the mechanism of
using the finite difference method for partial differential equation (heat
equation) by applying each of finite difference methods as an explanatory
example and showed a table with the results we obtained.

In the second chapter, we discussed the problem of different equation (1-D)
with boundary condition. The results were compared between the analytic
solution and numerical result and the results for the two methods were almost

identical.
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Introduction

Partial Differential Equation (PDE) is an equation involving an Unknown
functions of two or more variables and some partial derivatives special cases
of two dimensional second-order equation.

2 2 2 2 2
a2+ b(fx(;"y+ c‘;7f+ d=2 + edd—;"+ fo+g=0,
wherea,b,c,d,e, fand g may be function of the independent variables x
and y and of the dependent variable .
In applications the function usually represent physical quantities, the
derivatives represent their rates of change and the equation defines a relations
are extremely common , the differential equations play a prominent role in
many disciplines including engineering, physics, economics and biology.
Generally, these equation are classified into three types of equations, elliptic ,
when b? — 4ac < 0, Parabolic when b?— 4ac = 0 and hyperbolic when b? —
4ac>0.
Also, the equation can be classified on the order and degree and it way be
Linear or Non-Linear [ For more details [1] ].
The mathematical model is complete and for practical applications, the
solution of these differential equation is very important.
Therefore, many researchers concentrated on the solution of the differential
equations.
The solutions are divided into two types: the first is analytical, which is used
to find the exact solution for a specific problem and this includes separation of
variables and the transformation such as a Laplace transform, Fourier
transform. The other is numerically.
There will be times when solving the exact solution for the equation it will be
unavailable, since the complex nature of problem. At the present time, there
are many approaches that can be employed to solve the differential equations
and found the approximation solution of these equation.
Basically, the main methods are like finite difference method (FDM), finite
volume method (FVM) and finite element method (FEM).
However, as presented in numerous paper of numerical method, the finite
difference method has emerged as available tool for the solution of partial
differential equation .




Chapter 1

Finite difference method

1.1 Introduction

The finite difference approximation derivatives are one of the simplest and of
the oldest methods to solve differential equation. It was already known by L
.Euler (1707-1783) is one dimension of space and was probably extended to
dimension two by C. Runge (1856-1927). The advent of finite difference
techniques in numerical application began in the early 1950s and their
development was stimulated by the emergence of computes that offered a
convenient frame work for dealing with complex problem of science and

technology .

1.2 Finite difference approximation to derivatives

As a first step in developing a method of calculating the values of u at each
interior grid point, the space and time derivatives of u at the (i, j) grid point
must be expressed in terms of values of u at nearby grid points (see Figure 1).
Taylor series expansions of u about the (i, j) grid point will be used in this

process.

u(x+h,t)=u(x,t)+hu'(x,t)+}21—!2u"(x,t)+}31—!3u'"(x,t) (1.1)

ux+h,t)=u(x,t)+hu'(x,t) + O(h? (1.2
: : . : . )
with this equation (1.2) the forward difference approximation for %
0 (x+h,t)- ,
61; __u x+ th u (x,t) + O(h) (1.3)

with a leading error of O(h).



With this notation the forward difference approximation for % :
ou u(x ,t+k)— u(x,t)

= I +0(K) (1.4)

at

with a leading error of O(k).

The Taylor series for u(i— 1, j) about (i , j) is

UC—h ) = UG —h U (X, O+ = 07 (¢, 1) - —— U™ (X, 1) (15)
u(x—h,t)=u(x,t)—hu (x,1t)+O(h% (1.6)
with this equation (1.6) back ward difference approximation for %
21; - u(x,t)—:(x—h,t) + O(h) (1.7)
with a leading error of O(h)
with this notation the backward difference approximation for ZZ
ou - u(x,h)—u(x ,t—k) + O(k) (1 . 8)

at k
Addition of these (1.2) and (1.6) (giving central differences approximation to
0%u
d0x2

ux+ht)+u(x—ht)=u(x,t)+hu'(x,t)+ 2_'2 u" (x,t)+u(x,t)—hu'(x
1)+ u" (x,, 1) + O(h’)

(1.9)
0%u  _  u(x+h,t)-2u(x,t)+u(x—h,t) 2
e T = 0(h2). (1.10)
Similarly
%u  _ u(x,t+k)—2u (x ,t)+ u(x,t—k)
atiz,l — ux uk;c ux + O(kz) (1.11)

approximation to ;3_@; IS to subtract equations (1.6) from equation (1.2),
where all derivatives are evaluated at (i , j) , IS

u(x+h,)—ux—h,t)=u(x,t)+hu (x, t)-u(x, t)+h u' (x, )+o(h?).

ou u(x+h ,t)—u(x—nh,t)

e - +0(h) (1.12)
(centeral ——) , with a leading error of O(h).
ou _  u(xt+k)—u(x,t—k)
L - +0(K) (1.13)

(centeral %), with a leading error of O(k).
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There are methods of finite difference for solving the differential equations.

[ see [2], [3], [4]].

1.3 The explicit method

Is one of the methods used in numerical analysis for obtaining numerical
approximation to solution of time —dependent ordinary and partial differential

equations and from advantage the solution algorithm is simple to set up.
2
The solution —— = 3;2‘ of heat equation.
In this approaches using a forward difference at time t and a second order

central difference for the space derivatives.

ui,j+1-ui,j _  ui+l,j-2ui,j+ui-1,j

k k ) h?
ui,j+l_ui,j=?(Ui+1,j—2Ui'j+Ui,1,j)
SUppose = _At k&

PP T (Ax)2 h2

k
ui,j+l_ui,j=?(Ui+1,j—2Ui’j+Ui,1,j)
Ui je2=TUisn j+H(1=2r) U j+ruig | (1.14)

This is an explicit method for solving the heat equation.
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This explicit method is known to be numerically stable and convergent

whenever r < % and this conditions is one of the disadvantages of this
method.

Example :- consider the following heat equation :

ou 0%u

5. = aez 0<x<1

where
Hu=0 atx=0 and x=1 ,t>0 (the boundary condition)

i) u=2x for 0<x<—
u=2(1-x), for —<x<1 t = 0 (the initial condition)
Ax=h=0.1 At =k =0.001
k 1
r:—:—
h2 10



Upo= 0

Ugo= 0.
Ugo= 0.

when

8,
4,

=1

Uio= 0.2
Uso= 1
Ugo= 0.2

1 1
Ui j+1= 5 Uic1,j+ 0.8 Ui j+— Uiva,j

,J=0

, Uz = 0.6

, Us0=0.8
, Upo=0

, Uy = 04
, U70=0.6

1 1
= — +0). + — =
Ug 0 Uoo+0.8 Uy o Uo =0,2

1 1
= — + 0. +— =
Uz 1 0 Uo + 0.8 Uyp 0 Uso = 0,4

1 1
= — + 0. + — =
Uz = — Uzp 0.8 U3 o Y40 0,6

1 1
= — + 0. + —Ucqg =
Ug 1 0 Uso + 0.8 Usp o Uso=0,8

1 1
= — + 0. +— =
Us 1 o Uso + 0.8 Usg 0 Us,0 1

1 1
= — + 0. +— =
U1 = —5 Uso 0.8 Ug o o Uro 0,8

Application of equation (1.14) to the data of problem is shown in table (1)

Table (1)

iI=0 i=1 =2 =3 = =5 =

x=0 0,1 0,2 0,3 0,4 0,5 0,6
(i=0)t=0,000 | O | 0,2000 | 0,4000 | 0,6000 | 0,8000 | 1,000 | 0,8000
(i=1)= 0,001 0 | 0,2000 | 0,4000 | 0,6000 | 0,8000 | 0,9600 | 0,8000
(i=2)= 0,002 0 | 0,2000 | 0,4000 | 0,6000 | 0,7960 | 0,9280 | 0,7960
(i=3)=0,003 0 |0,2000 | 0,4000 | 0,5996 | 0,7896 | 0,9016 | 0,7896
(i=4)= 0,004 0 | 0,2000 | 0,4000 | 0,5986 | 0,7818 | 0,8792 | 0,7818
(i=5)= 0,005 0 |0,2000 | 0,3999 | 0,5971 | 0,7732 | 0,8597 | 0,7732




(i=10)=0,01 | 0 |0,1996 | 0,3968 | 0,5822 | 0,7281 | 0,7867 | 0,7281

(i=20)=0,02 | 0 |0,1938 |0,3781 | 0,5373 | 0,6486 | 0,6891 | 0,6486

1.4 Crank — Nicolson implicit method

Al though the explicit method is computationally simple it has one serious

drawback. The time step At = k is necessarily very small because the

process is valid only for 0 < % < % , k< % h% and h = Ax must

be kept small in order to attain reasonable a ccuracy.

Crank and Nicolson (1947) proposed, and used a method that reduces the total
volume of calculation and is valid (i.e convergent and stable) for all finite
values of r.

They considered the partial differential equation as being satisfied at the

midpoint (ih, (j + %) k ) and replaced aa;u by the mean of its finite

difference approximation at the ith and (j + 1)th time — levels.

In other words they approximated the equation.

ou 1 _ 0%u 1
S liem=laz i o

ui,j+1-ui,j _ 1 [ui+1,j—2ui,j+ui—1,j n ui+1,j+1—2ui,j+1+ui—1,j+1]
k T2 h2 h2
k
2Ui,j+1_2ui,j:_h2 (Uis1,j— 20 jF U1 j+* Uisg je1—2Ui jert Uisg j+1)
k
r=— , >0
hZ
-MUis1 j+1 +(2+2r) Ui j+1—TUi—1 j+1= I Ujsg j— (2-2r) Uij T rUi_q (115)

In general , the left side of equation (1.15) contains three unknown and the
right side three known, pivotal values of u (Fig (3) )
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Example:-
Use the Crank -Nicolson method to calculate a numerical solution of the
previous worked

w2 ey <1,t>0
at dx
let h=0.1 : k=0.01
k
r=—=1
h2

“Ui+1,j+1 84U joa—Ui—1 j+1= Ujs j+ Ui_q ]

let =0, i=1

- Uy1 +4U11 — Upg = Ugg + 4o

- Upy +4Uy; = 0.4 (1)
=0, i=2

-Uz1 +4Uy1 — Ug 1= Ugg + Uy g

- Uz 1 + 4U2,1 —Up1 = 0.8 (2)
j=0, i=3



- Ugq +4U31 —Upg = Uz + U

_U3,1+4U2,1_U2,1= 1.2 (3)
j=0, i=4
-Us 1+4U4 1-U3z 1=Us g+U3 -Us 1 +4U4 1-U3 1=1.6 (4)
j=0 , i=5
- Ugg *+ 4Us1 —Ugg = Ugo + Ugg
- Ug1 + 4Us1 —Usg = 1.6 (5)
-Upg t+ 4U1,1 =04............. (1)
-Uzg + 4U2,1 — U1 = 0.8 ccennnnnl (2)
-Ugq + 4U3|1 —Ux1 = 1.2........... (3)
-Us 1 + 4U411 —Uz1 = 1.6......... (4)
-Ug1 t+ 4U5’1 —Ug1 = 16 ........ (5)
Au=Db

AS indicated :
[ 4 -1 0 O 0 1 [uq [0,4]
| -1 4 -1 0 0] [Uz] |0,8]
l 0 -1 4 -1 o |usl = |1,2|
l 0 0 —1 4 —1J [u4J 1,6

0 0O 0O -1 4 Usg l1,6J

For the first time level and for each time level we have to solve the system
Au=Db, are easily solved by systematic Jacobi to give:

U;-0,1989 U,-0,3956 U3-0,5834 u,-0,7381 Us-0,7691

Application of equation (1.15) to the data of problem is shown in table (2)

Table (2)
i=0 i=1 =2 =3 I= =5
x=0 0,1 0,2 0,3 0,4 0,5
t=0,00 0 0,2 0,4000 | 0,6000 | 0,8000 | 1,000
t=0,01 0 00,1989 | 0,3956 | 0,5834 | 0,7381 | 0,7691




t=0,02 0 00,1936 | 0,3989 | 0,5400 | 0,6461 | 0,6921

t=0,10 0 00,0948 | 0,1803 | 0,2482 | 0,2918 | 0,3021

1.5  The fully implicit method

The simplest implicit method which solve the differential equation was
suggested by Brienetal. (1951) which approximate u,, in the (j +1) level

ou 0%u
ot oaxz] 1itl

ui,j+1-ui,j _ ui—-1,j+2ui,j+1+ui+1,j+1

k h?

ok
Ui j+1— Ui j= nZ (Ui—l,j+1_2ui,j+1+ ui+1,j+1)

FUi—q,j+1- (L42r) Ui joa +r Uicq j+1= - Uj

The general, the left side of equation contains three unknown and the right
side only one known , pivotal values of ( fig (4) )

10
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Example ;-  consider the folling heat equation :

9 92
Y= o< x < 1

0x2

at
h=0.1 , k =0.001
where

(Ju=0 at x=0andx=1 , t>0 (The boundary condition)

(i) u=2x for 0<x<—
u=2(1-x) for %£x§1 } t=0

IA

let i=1 , j=0
- Upg + 3Up 1 — Uy = Ug

3U1’1 —Uz1 = 0.2 (1)
i=2 . j=0

- Ug,1 + 3Up1 — Uz 1 = Ua

- Ugg + 3U2’1 — U3 = 0.4 (2)
i=3 . j=0

- Up1 + 3Uz1 — Ugy1 = Usp

- U2 + 3U3’1 —Us1 = 0.6 (3)

11



=4 , =0
- Ugg + 3Ug1 — Usy = Ugp

-Uzq+3Us1 —Us; = 0.8 (4)
iI=5 , j=0

- Ug1+ 3Us1 — Ug1 = Usg

-Ug1 +3Us1—Ug1 =1 (5)

3U1,1 —Uy1 = 0.2

-Upq +3Uz; — U3 = 0.4
- Uy +3U3;—Us; =06
- Us1+3Us1—Us1=0.8
- Ug1+3Usp—Us1=1

3 —1 0 0 07 [%] [0.2]
-1 3 -1 0 of |u] |04
0 -1 3 -1 o] |us]=]oe6
0 0 —1 3 -1 |u] los8
0 0 0 -1 31 Lul L4

For the first time level and for each time level we have to solve the system
Au = b, are easily solved by systematic (u=A *"b) to give:

u; =0.1917, u,=0.3750, u;=0.5333, u,=0.6250
us = 0.5417

The last system of equations can be solved by any iterative method (Jacobi ,
Gauss — seidel or foR) or any direct method .

12



Chapter 2

Application

2.1 Introduction

The finite difference method are useful to obtain approximate solution to
differential governing equation. In order to explain the finite difference
method and comparison with exact solution, We consider the following

sample problem.
0%u 1 odu

0x?2 x 0x

With Boundary condition

u(2)=0.008,u (6,5 =0003 at h=

2.2 Exact Solution of problem

62u+ 1 ou  u -
0x?2 x 0x x2

with boundary condition

u(2) =0.008 , u(6,5)=0.003 ath=

u=x"

ou .

dox =T Xr 1

9%u .
W =r (r-l) Xr 2

r(r-1) X"+ r X"t xt = x?x"=0

r.2Xr-2 r Xr-2 +r Xr-2 . Xr-2 — 0

(rr-1)x?=0

r-1=0 —, r=7F1
U=CiX + 2
X

13
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U=2C1+%2 ; 6-5C1+

C2
6,5

0,008=2¢;+ — Cpooo () (%65
0,003=6,5C; + — Cp.....2)  (*2

0,052 = 13¢; + 3,25¢C; ....... 3)
0,006 = 13¢1 + — Cp......... (4)

0,046 = 2,9424c,

¢, = 0,015633

¢, =9,1503 * 10
u=9.1503 *10° x + -
u, = 4 (3,5) = 0,0047871
uz = u(5) = 0,0035843

0,015634

2.3 Numerical Solution of problem

Pu, 1w uo_g
0x? x 0x x2 U U, us Ua
With Boundary condition : ° ’ °
X1 = 2 ( J X4 = 6.5
u(2)=0.008,u (6,5 =0.003 , h=15 h=15
0%u _ ui+1-2uitui-1
ax2 h?
ou _ ui+l-ui
ox h
ui+1-2ui+ui-1 1 ui+1-ui ui
+ — - =0
h2 xi h (xi)2
=1 u (2) =0.008
=2
ud-2u2+ul | 1 u3-42  u2  _
(1,5)2 3.5 1,5 (3,5)2

0,44444u, —1,1610 u, + 0,6349213 -0

14



=3
u4—-2u3d+u2
(1.5)2

u4—-u3 u3
1.5 (5 )2

1
T

0,44444u,- 1,0622u3 + 0,57778us =0

i=4
U 4= 0,003

1 0 0 0 Uy 0,008
0,44444 —1,1610 0,63442 0 Uz| 0

0 0,44444 - 1,0622 0,57778| |43 0

0 0 0 1 ]l 10,003
w1 0 0 0 17" to,008
u,| 10,44444 -1,1610 0,63442 0 0
U3 0 0,44444 - 1,0622 0,57778 0
Ya 0 0 0 1 0,003

u; =0,008 , u,=0,005128 ,u3=0,003778 , u,=0,003
The comparison in results between the analytic solution and numerical results
Is illustrated in Figure (5) .

s «1072 Results
Exact Solution
7.5 Finite Difference method |
7+
6.5
6 —
55
5r
\
4.5 AN
\\\
ar N
N
3.5 \\
3 1 1
0] 1 2 3 4 5 5] 7 8 9 10
Figure (5)
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