
Operating Systems
Instructor : Asaad Al Hijaj

Chapter 6: Process Synchronization

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

4.2 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Background

 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to ensure the

orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers. We can do so by

having an integer count that keeps track of the number of full

buffers. Initially, count is set to 0. It is incremented by the

producer after it produces a new buffer and is decremented by

the consumer after it consumes a buffer.

4.3 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Producer

while (true) {

 /* produce an item and put in nextProduced */

 while (count == BUFFER_SIZE)

 ; // do nothing

 buffer [in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 count++;

}

 while (true) {

 while (count == 0)

 ; // do nothing

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 count--;

 /* consume the item in nextConsumed

 }

Consumer

4.4 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Race Condition

 count++ could be implemented as

 register1 = count
 register1 = register1 + 1
 count = register1

 count-- could be implemented as

 register2 = count
 register2 = register2 - 1
 count = register2

 Consider this execution interleaving with “count = 5” initially:

 S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

4.5 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections

2. Progress - If no process is executing in its critical section and

there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times

that other processes are allowed to enter their critical sections

after a process has made a request to enter its critical section

and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

4.6 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Peterson’s Solution
 Two process solution

 Assume that the LOAD and STORE instructions are atomic; that is, cannot
be interrupted.

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section.

 The flag array is used to indicate if a process is ready to enter the critical
section. flag[i] = true implies that process Pi is ready!

 while (true) {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 CRITICAL SECTION

 flag[i] = FALSE;

 REMAINDER SECTION

 }

Algorithm for

Process Pi

4.7 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Synchronization Hardware

 Many systems provide hardware support for critical section
code

 Uniprocessors – could disable interrupts

 Currently running code would execute without
preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware
instructions

 Atomic = non-interruptable

 Either test memory word and set value

 Or swap contents of two memory words

4.8 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Semaphore
 Synchronization tool that does not require busy waiting

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

 wait (S) {

 while S <= 0

 ; // no-op

 S--;

 }

 signal (S) {

 S++;

 }

4.9 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an

unrestricted domain

 Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement

 Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

 Semaphore S; // initialized to 1

 wait (S);

 Critical Section

 signal (S);

4.10 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and

signal () on the same semaphore at the same time

 Thus, implementation becomes the critical section problem

where the wait and signal code are placed in the crtical section.

 Could now have busy waiting in critical section

implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections

and therefore this is not a good solution.

4.11 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue.

Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the

appropriate waiting queue.

 wakeup – remove one of processes in the waiting queue

and place it in the ready queue.

4.12 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Semaphore Implementation with no Busy waiting (Cont.)

 Implementation of wait:

 wait (S){

 value--;

 if (value < 0) {

 add this process to waiting queue

 block(); }

 }

 Implementation of signal:

 Signal (S){

 value++;

 if (value <= 0) {

 remove a process P from the waiting queue

 wakeup(P); }

 }

4.13 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

4.14 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Classical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

Bounded-Buffer Problem

4.15 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Bounded Buffer Problem (Cont.)

 The structure of the producer

process

 while (true) {

 // produce an item

 wait (empty);

 wait (mutex);

 // add the item to the

buffer

 signal (mutex);

 signal (full);

 }

 The structure of the consumer process

 while (true) {

 wait (full);

 wait (mutex);

 // remove an item from buffer

 signal (mutex);

 signal (empty);

 // consume the removed item

 }

4.16 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any

updates

 Writers – can both read and write.

 Problem – allow multiple readers to read at the same time. Only

one single writer can access the shared data at the same time.

 Shared Data

 Data set

 Semaphore mutex initialized to 1.

 Semaphore wrt initialized to 1.

 Integer readcount initialized to 0.

4.17 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Dining-Philosophers Problem

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

4.18 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Solution to Dining Philosophers

 Dining Philosophers

 Five philosophers sit around a circular table. Each

philosopher spends his life alternatively thinking and

eating. In the centre of the table is a large plate of

spaghetti. A philosopher needs two forks to eat a

helping of spaghetti. Unfortunately, as philosophy is

not as well paid as computing, the philosophers can

only afford five forks. One fork is placed between

each pair of philosophers and they agree that each

will only use the fork to his immediate right and left..

4.19 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Solution to Dining Philosophers (cont)

• Note : The Java applete for Demonstration of Dining Philosophers Solution
found in the website
(http://www.doc.ic.ac.uk/~jnm/book/book_applets/Diners.html)

• The slider in the applet below controls the amount of time that a philosopher

spends eating and thinking. Philosophers are depicted in yellow when they

are thinking, blue when hungry and green when eating

4.20 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Dining-Philosophers Problem (Cont.)

 The structure of Philosopher i:

While (true) {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

}

4.21 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

 Uses interrupt masks to protect access to global resources on

uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Also provides dispatcher objects which may act as either mutexes and

semaphores

 Dispatcher objects may also provide events

 An event acts much like a condition variable

Windows XP Synchronization

