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Background 

 Concurrent access to shared data may result in data 

inconsistency 

 Maintaining data consistency requires mechanisms to ensure the 

orderly execution of cooperating processes 

 Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers. We can do so by 

having an integer count that keeps track of the number of full 

buffers.  Initially, count is set to 0. It is incremented by the 

producer after it produces a new buffer and is decremented by 

the consumer after it consumes a buffer. 
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Producer  

while (true) { 

      

          /*  produce an item and put in nextProduced  */ 

       while (count == BUFFER_SIZE) 

   ; // do nothing 

         buffer [in] = nextProduced; 

         in = (in + 1) % BUFFER_SIZE; 

         count++; 

}    
 

    while (true)  { 

         while (count == 0) 

          ; // do nothing 

          nextConsumed =  buffer[out]; 

           out = (out + 1) % BUFFER_SIZE; 

                   count--; 

 

   /*  consume the item in nextConsumed 

 } 

Consumer 
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Race Condition 

 count++ could be implemented as 
 
     register1 = count 
     register1 = register1 + 1 
     count = register1 

 count-- could be implemented as 
 
     register2 = count 
     register2 = register2 - 1 
     count = register2 

 Consider this execution interleaving with “count = 5” initially: 

 S0: producer execute register1 = count   {register1 = 5} 
S1: producer execute register1 = register1 + 1   {register1 = 6}  
S2: consumer execute register2 = count   {register2 = 5}  
S3: consumer execute register2 = register2 - 1   {register2 = 4}  
S4: producer execute count = register1   {count = 6 }  
S5: consumer execute count = register2   {count = 4} 
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Solution to Critical-Section Problem 

1. Mutual Exclusion - If process Pi is executing in its critical 

section, then no other processes can be executing in their 

critical sections 

2. Progress - If no process is executing in its critical section and 

there exist some processes that wish to enter their critical 

section, then the selection of the processes that will enter the 

critical section next cannot be postponed indefinitely 

3. Bounded Waiting -  A bound must exist on the number of times 

that other processes are allowed to enter their critical sections 

after a process has made a request to enter its critical section 

and before that request is granted 

 Assume that each process executes at a nonzero speed  

 No assumption concerning relative speed of the N processes 
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Peterson’s Solution 
 Two process solution 

 Assume that the LOAD and STORE instructions are atomic; that is, cannot 
be interrupted. 

 The two processes share two variables: 

 int turn;  

 Boolean flag[2] 

 The variable turn indicates whose turn it is to enter the critical section.   

 The flag array is used to indicate if a process is ready to enter the critical 
section. flag[i] = true implies that process Pi is ready! 

 while (true) { 

               flag[i] = TRUE; 

               turn = j; 

               while ( flag[j] && turn == j); 

 

                     CRITICAL SECTION 

 

               flag[i] = FALSE; 

 

                       REMAINDER SECTION 

 

       } 

  

Algorithm for 

Process Pi 
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Synchronization Hardware 

 Many systems provide hardware support for critical section 
code 

 Uniprocessors – could disable interrupts 

 Currently running code would execute without 
preemption 

 Generally too inefficient on multiprocessor systems 

 Operating systems using this not broadly scalable 

 Modern machines provide special atomic hardware 
instructions 

 Atomic = non-interruptable 

 Either test memory word and set value 

 Or swap contents of two memory words 
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Semaphore 
 Synchronization tool that does not require busy waiting  

 Semaphore S – integer variable 

 Two standard operations modify S: wait() and signal() 

 Originally called P() and V() 

 Less complicated 

 Can only be accessed via two indivisible (atomic) operations 

 wait (S) {  

           while S <= 0 

            ; // no-op 

              S--; 

      } 

 signal (S) {  

        S++; 

     } 
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Semaphore as General Synchronization Tool 

 Counting semaphore – integer value can range over an 

unrestricted domain 

 Binary semaphore – integer value can range only between 0  

and 1; can be simpler to implement 

 Also known as mutex locks 

 Can implement a counting semaphore S as a binary semaphore 

 Provides mutual exclusion 

 Semaphore S;    //  initialized to 1 

 wait (S); 

            Critical Section 

     signal (S); 

 



4.10 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj 

Semaphore Implementation 

 Must guarantee that no two processes can execute wait () and 

signal () on the same semaphore at the same time 

 Thus, implementation becomes the critical section problem 

where the wait and signal code are placed in the crtical section. 

 Could now have busy waiting in critical section 

implementation 

But implementation code is short 

Little busy waiting if critical section rarely occupied 

 Note that applications may spend lots of time in critical sections 

and therefore this is not a good solution. 
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Semaphore Implementation with no Busy waiting  

 With each semaphore there is an associated waiting queue. 

Each entry in a waiting queue has two data items: 

  value (of type integer) 

  pointer to next record in the list 

 

 Two operations: 

 block – place the process invoking the operation on the      

appropriate waiting queue. 

 wakeup – remove one of processes in the waiting queue 

and place it in the ready queue. 
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Semaphore Implementation with no Busy waiting (Cont.) 

 Implementation of wait: 

 

                        wait (S){  

                           value--; 

                           if (value < 0) {  

                 add this process to waiting queue 

                  block();  } 

                         } 

 

 Implementation of signal: 

 

                        Signal (S){  

                              value++; 

                               if (value <= 0) {  

                    remove a process P from the waiting queue 

                     wakeup(P);  } 

                        } 
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Deadlock and Starvation 

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes 
 

 Let S and Q be two semaphores initialized to 1 

  P0  P1 

      wait (S);                                       wait (Q); 

        wait (Q);                                       wait (S); 

  .   . 

  .   . 

  .   . 

          signal  (S);                                         signal (Q); 

          signal (Q);                                         signal (S); 

 

 Starvation  – indefinite blocking.  A process may never be 
removed from the semaphore queue in which it is suspended. 
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Classical Problems of Synchronization 

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem 

 N buffers, each can hold one item 

 Semaphore mutex initialized to the value 1 

 Semaphore full initialized to the value 0 

 Semaphore empty initialized to the value N. 

 

Bounded-Buffer Problem 
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Bounded Buffer Problem (Cont.) 

 The structure of the producer 

process 

 

           while (true)  { 

 

                         //   produce an item 

 

                   wait (empty); 

                   wait (mutex); 

 

                         //  add the item to the  

buffer 

 

                    signal (mutex); 

                    signal (full); 

           } 

 The structure of the consumer process 

 

           while (true) { 

                    wait (full); 

                    wait (mutex); 

 

                        //  remove an item from  buffer 

 

                    signal (mutex); 

                    signal (empty); 

              

                         //  consume the removed item 

 

           } 
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Readers-Writers Problem 

 A data set is shared among a number of concurrent processes 

 Readers – only read the data set; they do not perform any 

updates 

 Writers   – can both read and write. 

 

 Problem – allow multiple readers to read at the same time.  Only 

one single writer can access the shared data at the same time. 

 

 Shared Data 

 Data set 

 Semaphore mutex initialized to 1. 

 Semaphore wrt initialized to 1. 

 Integer readcount initialized to 0. 
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Dining-Philosophers Problem 

 Shared data  

 Bowl of rice (data set) 

 Semaphore chopstick [5] initialized to 1 
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Solution to Dining Philosophers 

 Dining Philosophers 

 Five philosophers sit around a circular table. Each 

philosopher spends his life alternatively thinking and 

eating. In the centre of the table is a large plate of 

spaghetti. A philosopher needs two forks to eat a 

helping of spaghetti. Unfortunately, as philosophy is 

not as well paid as computing, the philosophers can 

only afford five forks. One fork is placed between 

each pair of philosophers and they agree that each 

will only use the fork to his immediate right and left..  
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Solution to Dining Philosophers (cont) 

• Note : The Java applete for Demonstration of  Dining Philosophers Solution 
found in the website 
(http://www.doc.ic.ac.uk/~jnm/book/book_applets/Diners.html )  

• The slider in the applet below controls the amount of time that a philosopher 

spends eating and thinking. Philosophers are depicted in yellow when they 

are thinking, blue when hungry and green when eating 
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Dining-Philosophers Problem (Cont.) 

 The structure of Philosopher i: 

 

While (true)  {  

          wait ( chopstick[i] ); 

      wait ( chopStick[ (i + 1) % 5] ); 

  

              //  eat 

 

      signal ( chopstick[i] ); 

      signal (chopstick[ (i + 1) % 5] ); 

  

                 //  think 

 

} 
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Problems with Semaphores 

  Incorrect use of semaphore operations: 

 

  signal (mutex)  ….  wait (mutex) 

 

  wait (mutex)  …  wait (mutex) 

 

  Omitting  of wait (mutex) or signal (mutex) (or both) 

 

 Uses interrupt masks to protect access to global resources on 

uniprocessor systems 

 Uses spinlocks on multiprocessor systems 

 Also provides dispatcher objects which may act as either mutexes and 

semaphores 

 Dispatcher objects may also provide events 

 An event acts much like a condition variable 

Windows XP Synchronization 


